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Your Search Path Tells Others Where to Park: Towards Fine-Grained
Parking Availability Crowdsourcing Using Parking Decision Models
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A main challenge faced by the state-of-the-art parking sensing systems is to infer the state of the spots not covered
by participants’ parking/unparking events (called background availability) when the system penetration rate is
limited. In this paper, we tackle this problem by exploring an empirical phenomenon that ignoring a spot along a
driver’s parking search trajectory is likely due to the unavailability. However, complications caused by drivers’
preferences, e.g. ignoring the spots too far from the driver’s destination, have to be addressed based on human
parking decisions. We build a model based on a dataset of more than 55,000 real parking decisions to predict the
probability that a driver would take a spot, assuming the spot is available. Then, we present a crowdsourcing
system, called ParkScan, which leverages the learned parking decision model in collaboration with the hidden
Markov model to estimate background parking spot availability. We evaluated ParkScan with real-world data
from both off-street scenarios (i.e., two public parking lots) and an on-street parking scenario (i.e., 35 urban
blocks in Seattle). Both of the experiments showed that with a 5% penetration rate, ParkScan reduces over 12.9%
of availability estimation errors for all the spots during parking peak hours, compared to the baseline using only
the historical data. Also, even with a single participant driver, ParkScan cuts off at least 15% of the estimation
errors for the spots along the driver’s parking search trajectory.

CCS Concepts: • Information systems → Location based services; • Human-centered computing →
Ubiquitous and mobile computing;

Additional Key Words and Phrases: Mobile Sensing, Crowdsourcing, Parking, Human Decision Modeling

1 INTRODUCTION

Parking availability sensing is an important topic in the context of Smart City. According to a recent
survey [38], cars seeking for parking on average spend 3.5 to 14 minutes on cruising before finding an
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available spot in downtown areas, which account for 30% of street traffic. Moreover, many cities are
experimenting dynamic parking price policies, which are based on real-time parking availability [31, 48].
To date, most parking sensing systems are focused on detecting where and when a parking or unparking
event happens using various sensors. Since the early 2000s, researchers have been using dedicated sensors
(e.g. infrared sensor at each spot) [12, 32] or human reports [2] to detect the state of monitored spots.
More recently, sensors in smartphones were explored to identify the transition between driving and other
mobility patterns to infer parking/unparking events of participant drivers [22, 29, 44].
However, most existing sensing systems are not designed to efficiently estimate the availability of

background spots, i.e., those not covered by dedicated sensors or by the parking/unparking events of
participant drivers. These background spots, due to low penetration rates of existing parking sensing
systems, account for the vast majority of urban parking resources. Even worse, in many application
scenarios, we need the fine-grained availability estimation at the spot level. For instance, when looking
for a parking spot in a busy airport parking lot, a driver needs to know which spots are more likely to be
available. Existing crowdsourcing approaches extrapolate statistics generated from sensed spots to the
overall parking availability using the random sampling theory [32]. Since the sampling theory is primarily
suitable for a large population random process, the current method to estimate background parking
availabilities is intrinsically inefficient for fine-grained background parking availability estimations.
To address this issue, we design ParkScan, a crowdsourcing system estimating the availability of

the parking spots along drivers’ parking search trajectories. The key idea of ParkScan is based on the
empirical observation that passing by a parking spot that is of interest to the driver’s destination implies
that the spot is unavailable. For instance, if a driver cruises around her/his workplace for a long time
and parks at a spot far away, we can infer that most spots, if not all, along the cruising path should be
unavailable. Otherwise, the driver would take one of them. Given that people’s travel destinations for daily
commutes can be highly predictable along with the ubiquity of trajectory data, ParkScan leverages the
participating drivers as human sensors to scan the spots along their parking search trajectories and then
infer the spots that have possibly been taken. Since a driver’s search trajectory usually covers many spots
[38], ParkScan has a great potential to improve the parking sensing coverage with little cost incurred,
compared to solutions based on dedicated sensors. Moreover, as we use the driver’s search trajectory
to directly estimate the parking availability along the trajectory, we can overcome the drawbacks of
extrapolating participant parking events to global parking statistics using only sampling theory. As a
result, ParkScan tolerates a much lower penetration rate, e.g. even with a single driver.

The key technical challenge we address in ParkScan is how to model drivers’ general parking preferences
in heterogeneous parking facilities and to merge the estimates from different parking search trips at
different times to build the best estimation. In particular, the contributions of this paper are as follows:

• To study drivers’ parking decisions, we collect a large-scale dataset that consists of more than
8,000 vehicle trajectories in the parking lot and 55,000 parking decision events, i.e, either taking or
ignoring an available spot during a parking search process. With the features extracted from this
valuable dataset, we build a data-driven model that reflects driver’s underlying decision strategy. To
the best of our knowledge, this is the first dataset at scale that records real driver’s parking decisions
with rich features. Based on this dataset, our model is the first data-driven parking decision model
generated from large-scale real-world parking decision observations. The sample dataset is shared
with the research community in [20].

• We design a crowdsourcing system called ParkScan to complement the state-of-the-art parking
crowdsourcing systems particularly for fine-grained background parking availability estimations.
ParkScan takes parking searching trajectories from participant vehicles as input. By combining
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with historical knowledge and static parking facility layouts, ParkScan leverages a learned parking
decision model to generate probabilistic parking availability estimations at the parking spot level.

• We evaluate ParkScan in both off-street scenarios (i.e., two public parking lots) and a city-scale
on-street parking scenario. In the parking lot experiments, we utilize over 6,000 human parking
search trajectories and real-world parking availability to conduct the evaluation. In the city-scale
street parking scenario, we conduct data-driven evaluations using over 63,000 parking requests
generated from real parking transactions in an urban area covering 35 blocks in Seattle, WA. Both
of the experiments showed that with a 5% penetration rate, ParkScan reduces at least 12.9% of
availability estimation errors for all the spots in the experimental scenario during the peak parking
hours, compared to a state-of-the-art solution based on historical data. More importantly, even
with a single participant driver, ParkScan cuts off 15% of estimation errors for the parking spots
along drivers’ parking search trajectories.

The rest of this paper is organized as follows: Section 2 provides the main idea of the ParkScan system.
Section 3 presents the architecture of ParkScan and discusses the technical challenges. Section 4 elaborates
on our parking search dataset and how we build our data-driven parking decision model. Section 5
discusses in detail how to use the pre-trained parking decision model to estimate spot availability and
how to merge estimations of different qualities into one availability probability estimation. Sections 6 and
7 present the evaluation experiments and results for off-street parking and on-street parking scenarios.
Finally, we discuss the limitations and some insights in Section 8 and related work in Section 9, followed
by the conclusion of the paper in Section 10.

2 MOTIVATION

Fig. 1. Parking search process Fig. 2. ParkScan use case

To motivate the design of ParkScan, we analyze the human behavior during the parking search process,
i.e., the process from a driver starts looking for parking until the driver parks the car.

As shown in Fig. 1, a typical parking search process can be modeled as a sequence of decisions. During
a parking search trip π, a driver u needs to make routing decisions at each intersection. More frequently, u
faces a decision moment when u decides whether to take an available spot i. Based on the state-of-the-art
work [3, 25, 40, 45], this decision process is probabilistic and determined by the driver’s parking decision
model where with the probability pu,π,i (¬ park | empty), u chooses to ignore the spot i and continues to
search for the next available spot; with the probability of 1− pu,π,i (¬ park | empty), u chooses to take
the spot i for parking.
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An example of this parking process is illustrated in Fig. 2. A driver who is looking for a parking spot in
a parking lot visited several spots, i.e., from spot 1 to spot 4. But since these spots were already taken, the
driver continues to search until finding an available spot, i.e., spot 5. The driver evaluated this spot 5 by
implicitly computing a probability, pu,π,i (¬ park | empty) based on the distance to his/her trip destination,
i.e., the building on the right side of the figure. In this case, the probability pu,π,i (¬ park | empty) for
ignoring spot 5 is not quite high, so the driver selects spot 5 and parks there.

Given the driver’s parking search trajectory in Fig. 2 (the dotted line) and the driver’s final destination,
intuitively, we can easily find that spot 1 to spot 4 are “better” than spot 5 for this driver. Since the
driver has by-passed these spots and parked at a suboptimal spot, we can infer that spot 1 to spot 4 were
taken when the driver visited them. During this intuitive process, this inference is actually a Bayesian
modeling process defined by the following equation:

pu,π,i (empty | ¬ park) =
pu,π,i (¬ park | empty) × pi (empty)

pu,π,i (¬ park)
, (1)

where pu,π,i (¬ park | empty) is the probability for a driver u to ignore spot i when i is available, pi (empty)
is the probability that spot i is available, pu,π,i (¬ park) is the probability that u does not park in spot i
for trip π. Note that, only pu,π,i (¬ park | empty) is estimated using an observer’s parking decision model,
so both pi (empty) and pu,π,i (¬ park) are prior knowledge that can be learned using historical data.
The above discussion essentially suggests that if we are given a parking search trajectory, it implies

that all spots except for the last one along the trajectory are ignored by the driver. If we can estimate
pu,π,i (¬ park | empty) by feeding necessary features into a machine learning model, the observation that
the driver u does not choose to take spot i leads to an estimation of the posterior probability that spot i
is available. Since this process combines the historical knowledge and real-time observations, it could
potentially provide a better availability estimation for the background spots along a driver’s parking search
trajectory. For instance, when a spot i is extremely attractive for driver u’s trip π, pu,π,i (¬ park | empty)
will approach zero. In this case, when the driver u ignores this attractive spot, we will accordingly have
pu,π,i (empty | ¬ park) to be very small, indicating that spot i is not likely to be available.

3 PARKSCAN OVERVIEW

Based on the discussion in Section. 2, we present an overview of the ParkScan crowdsourcing system.

3.1 Key Idea

When a participating driver starts a searching process for a parking spot, the key objective of ParkScan
is to provide parking availability estimations of nearby parking spots to facilitate this search process, e.g.
by influencing their search routing, with a frontend app and a backend cloud server. The key feature of
ParkScan is its transparency to its background participating drivers whose searching processes contribute
to parking availability estimations for drivers using ParkScan for parking. While a driver is looking for a
parking spot near her/his final destination, our ParkScan frontend app will show locations of potential
parking spots with different probabilities indicating parking availability estimations to the driver. Based
on these availability estimations, the driver will select a route to find an available parking spot with a
high probability. Then, the key question becomes how to obtain parking availability estimations.
In this paper, we utilize a driver’s search trajectory along with his/her final destination to infer and

update parking availability estimations for the parking spots along the search trajectory. As follows, we
introduce these three components, respectively. (i) Search Trajectories: While showing parking availability
estimations to the driver, the ParkScan app simultaneously tracks his/her search trajectory. After a
parking event is detected for this vehicle, e.g., when a transition from an in-vehicle mode to an on-foot
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Fig. 3. ParkScan system architecture

mode is detected by Google activity recognition API [9], the search trajectory of this parking event
near the final parking spot will be recorded by the ParkScan app. (ii) Final Destinations: Driver’s final
destinations are important for ParkScan to improve its performance. Some drivers may have their final
destinations input in the navigation system, which can be utilized by our ParkScan app. In such case,
when the driver occupies a parking spot and starts walking to his/her final destination, the ParkScan app
will upload the recorded trajectory and the final destination to a backend ParkScan cloud server. However,
other drivers may drive without using a navigation system. In this case, our ParkScan system can estimate
the drivers’ final destinations by using locations of the first building that drivers entered [28]. (iii) Parking
Availability Estimations: Upon receiving a search trajectory (ending with the parked position) together
with a final destination, the ParkScan cloud server extracts a few features needed for a pre-built parking
decision model. For each of the spots covered by a search trajectory, ParkScan estimates its posterior
availability probability (details are in Section 2) to update parking estimations. Finally, these updated
parking estimations are then utilized by subsequent drivers during their parking search processes.
In this paper, we focus on the key idea of ParkScan, which is to utilize search trajectories and final

destinations to estimate parking availabilities of parking spots because parking/unparking detections and
trajectory tracking techniques have been extensively studied, e.g. [22, 28, 39, 47].

3.2 Architecture

Based on the previous discussion, we present the architecture of ParkScan in Fig. 3. The parking decision
model is the key component used in the ParkScan server, which is trained offline using a large-scale
parking decision dataset. However, as this model describes the parking decision strategy of generic drivers,
it does not have to be re-trained for each individual deployment. To justify this design choice, we present
a default model and test it using different settings in Section 6 and Section 7.
For online parking availability estimations, ParkScan uses both real-time data (i.e., parking search

trajectory and drivers destination estimated from the ParkScan app), and off-line data (i.e., historical
parking statistics and stationary parking facility map) as input. When the real-time input data of a driver
are received, ParkScan first processes the trajectory and generates two types of parking spots: (i) parking
spot candidates (the spots that have been potentially taken by this driver based on the ending position
of the search trajectory) and (ii) pass-by spots (the rest spots along the search trajectory).

Since locations reported in the trajectory, especially the ending point, are noisy, we rectify the trajectory
and estimate the localization errors by using static map of the parking facility. The parking spot candidates
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define probabilistic observations to fill those spots. For the pass-by spots, we generate the features by
using both a static parking layout and historical data, and then feed them into the parking decision
model to compute the probabilistic posterior availability, i.e., using Equation 1. Since the estimates from
a single parking candidate or pass-by spot observation are error-prone, we apply an estimation fusion
process to combine the estimates from heterogeneous resources at different moments with the historical
data to build the latest parking spot availability estimation. This process generates the final results for
participant drivers and other potential applications, e.g. a routing service.

3.3 Challenges

In order to build ParkScan, there are two key challenges to address. This subsection elaborates on these
challenges and our main idea to address them.

3.3.1 Modeling Parking Decision with Accessible Scenario-independent Features. The first challenge faced
in ParkScan is building a generic model that predicts the likelihood that a driver would take spot i when
it is available, i.e., 1 − pu,π,i (¬ park | empty). As prior parking behavioral studies showed that people
apply similar parking search strategies in various environments [6, 10], we applied a data-driven approach
to build the model from a dataset of extensive real parking trajectories and driver’s parking decisions
from surveillance videos of a public parking lot. More importantly, the proposed parking decision model
uses only features independent of individual parking facilities and obtainable from search trajectories,
static data resources, and historical data. In this way, the model is robust for different scenarios, and
does not have to be re-trained for every new deployment. We will explain parking decision modeling in
more detail in Section 4.

3.3.2 Generating and Fusing Heterogeneous Estimations. Assuming the parking decision model has
been built, we need to extract the spot visits along the search trajectories and infer the parked spots
according to the reported noisy parked position. For the spot visited along the search trajectory, we
need to generate the features in realtime so that Equation 1 can be leveraged to get the spot availability
estimates. Note that, the individual estimates from the parked position or pass-by spot along the search
trajectory may be inaccurate due to the GPS noise or only unpredictable causes, e.g. the driver might
just neglect an available spot. Therefore, after we get estimates from heterogeneous resources, i.e., parked
position, pass-by visits from different vehicles at various times and historical data, we need to fuse them
together to build the latest estimates when a driver requests for the estimation map. Moreover, all of these
considerations have to work well when the penetration rate of ParkScan is low. To solve this problem, we
discuss the realtime process in the ParkScan server and present a framework based on hidden Markov
model for estimation fusion (details are shown in Section 5).

4 MODEL PARKING DECISION

In this section, we present our parking decision model based on large-scale surveillance video data
we collected in a parking lot. Compared to GPS-based data, surveillance video data provide detailed
information about trajectories of all vehicles and empirical parking decisions without installing GPS
devices or smartphones in each individual vehicle. Note that surveillance video data are only used to
train an offline model beforehand, and ParkScan does not require surveillance video data to function in
real time.

This section first starts by describing our method to obtain the parking decision dataset from surveillance
videos of a public parking lot, then explains how we extract scenario-independent and accessible features
from these videos, and finally builds our generic parking decision model.
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4.1 Video Dataset Generation

Our data source is a public parking lot on a university campus, where we placed a surveillance camera to
video record the parking lot from an approximately 45-degree birds-eye view. We produced a parking
decision dataset by extracting realistic parking events along with driver’s final parking decisions from
the video. The parking lot has 192 available spots including 12 spots for handicap parking, and drivers
usually use this parking lot when they visit two buildings located at two exits shown in Fig. 4.

Fig. 4. Layout of the data source lot Fig. 5. Video processing

4.1.1 Vehicle Trajectory. We take three steps to process the raw video data to generate the parking
trajectories as shown in Fig. 5. (i) Calibration: The calibration step builds a translation matrix from a
video frame to the map of the physical world by using affine transformation. (ii) Mobile Blob Detection:
Each video frame is fed into a Pixel Based Adaptive Segmenter [11] to detect moving objects and remove
shadows using LR Textures based detection [34]. (iii) Blob Matching: Finally, we track the moving blobs
and differentiate vehicles from pedestrians using the model presented in [35]. After these steps, we recover
the trajectory of a vehicle in the parking lot.

4.1.2 Spot State Ground-truth and Parking Decision. The position where the parking trajectory termi-
nates defines the taken spot. Similarly, the position where the leaving trajectory starts defines the leaving
spot. The accumulation of the taken spot and leaving spots generates the ground-truth of the parking lot
availability state at any given time. Using the parking trajectory collected in Section 4.1.1, we set up
a distance threshold to determine spot visibility of all drivers. If a visible spot is available, it defines a
parking decision event for a timestamped location. The driver’s choice for each parking decision event is
generated such that only the last visit to its taken spot is a “take” decision and all the rest are labeled as
“ignore”.

4.1.3 Final Destination Extraction. Since the drivers in the experimental parking lot have only two final
destination options (i.e., two buildings next to the exits), we build a binary classifier to infer their final
destinations using turning directions, when they are searching for parking spots, e.g. the direction of a
drivers first turn after entering the parking lot shows a very strong correlation to his/her final destination.
Our cross-validation results show that this classifier predicts drivers’ destinations with 92% accuracy.
Therefore, we use the prediction result as the ground-truth destination for each parking event.

4.1.4 Summary. From the video records in the workdays between Oct. 30, 2015 and Nov. 25, 2015, we
extracted 8,181 vehicle trajectories, among which 5,988 trajectories are parking trajectories. In total,
over 55,000 parking events are generated, with 5,754 decisions labeled as “take” and the rest labeled as
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“ignore”. Fig. 6 depicts the cumulative distribution function (CDF) of the parking availability based on
the collected spot availability ground truth. Fig. 7 illustrates the CDF of the number of visited spots
per parking trajectory and that of visited available spots per trajectory. Fig. 6 highlighted the needs for
estimating spot-level parking availability, because during some time, e.g. 8:00 or 10: 00, the CDF grows
smoothly, meaning there is much variance among different spots’ availability rates. Based on Fig. 7, the
mean of the number of all visited spots and that of visited available spots are 47.3 and 14.7, respectively.
The large mean of the number of all visited spots implies that the posterior parking availability estimation
has a higher potential to obtain high coverage. The high mean of the number of all visited available spots,
on the other hand, suggests the requirement of an efficient parking decision model, because we need to
filter out the influence of many spots that are ignored by drivers but in fact available.

Fig. 6. CDF of parking spot occupancy
rate at different times of day

Fig. 7. CDF of the number of visited
(available) spots per trajectory

4.2 Feature Engineering

After the training dataset is obtained, including historical parking availability statistics, parking trajecto-
ries, final destinations of drivers, and parking decisions, we use this information to define the features
that can be used in a parking decision model and accessible in real time for ParkScan.

4.2.1 Spot related features. Since a parking decision model essentially reflects human’s evaluation on
the properness of a spot for the trip destination, we define a set of features to evaluate a particular spot.

Percent of better spots (PBS): This feature depicts the rank of the current spot sc among all spots
S in the parking lot, according to their total travel cost costtotal, i.e., the driving time to a spot plus the
walking time from that spot to the driver’s final destination. We defined a “superior” spot set Ss for the
current spot sc, which includes all the spots whose total travel time is shorter than sc. As a result, the
PBS for a current spot sc is defined as |Ss(sc)|/|S|, where |.| denotes the size of a set.

Expected cost saving (ECS): ECS is designed to complement PBS to describe how much cost the
spots in Ss(sc) is expected to save for a driver including both the magnitude of the saving for each spot
and the available probability for that spot. ECS is defined as:

ECS(sc) =

∑
s∈Ss(sc)

p(s) ∗ (costtotal(sc)− costtotal(s))

|Ss(sc)| , (2)

where p(s) is the historical probability estimation that a spot s is available at present. ECS is designed
for the people who would optimistically seek to minimize their total travel costs.
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Expected cost overhead (ECO): In contrast to ECS, we compute the ECO for those who value the
risk of missing the current spot as:

ECO(sc) =

∑
s∈S−Ss(sc)

p(s) ∗ (costtotal(s)− costtotal(sc))

|S − Ss(sc)| . (3)

Conceptually, the larger the ECO value, the more likely a driver would choose to park at the current spot.
Historical availability (HA): It is well believed that the parking availability influences people’s

parking decision [4, 7, 10, 17, 43]. For instance, when the parking condition is critical, people tend to
take a spot even if the spot is not that “good”. As we do not have access to people’s real visibility, we
use HA for a spot i at the same time of day as the decision moment as one feature dimension for the
parking decision event for that spot i.
Added walking distance (WD): Intuitively, the further a spot is from the driver’s final destination,

the less likely a driver would park at that spot. Since we essentially need to choose a spot from a
consideration set, e.g. a parking lot, we normalize WD by subtracting the minimum walking distance of
any parking spot in the consideration set from the actual walking distance of the current spot.
Driving direction (DD): This is represented as the angle between the current driving direction and

the straight line segment connecting driver’s current position and the final destination. Ideally, when a
driver is heading to the final destination, she/he should have a lower probability to take a spot compared
to when she/he is moving further from the destination.

4.2.2 Trip-related features. In addition to the spot related features, there are some trip related features
that also influence driver’s parking decisions.
Parking search time (PST): This feature is calculated by subtracting the search start time from

the current time. Ideally, the larger the value, the more likely a driver should choose to park, once he/she
finds an available spot.
Number of visited spot (NVS): This is the total number of visited spots during a driver’s parking

search trajectory. This feature overlaps with parking search time since a longer search time generally
means more search spots. However, we found within a same search duration, exploring more spots reflects
a driver’s risk-taking trend, therefore it might predict a lower probability if he/she finds an available spot.

4.2.3 Summary. All spot related features defined above can be built, given historical availabilities,
the parking facility layout, the driver’s destination, the current spot’s position and the driving direction
(binary along with the street or aisle in a parking lot). Trip-related features can also be easily obtained in
a parking lot scenario because a driver’s parking search trip starts when the vehicle enters the parking
lot. The determination of the starting point of an on-street parking searching trajectory will be discussed
in Section 5. Note that, we articulately normalized most features for individual parking facilities instead
of using absolute costs, so that the model is generic for different parking facilities without having the
model re-trained for every deployment.
We ran the logistic regression and based on the absolute value of features’ coefficients, we get the

rank list of importance for the features: HA > WD > ECO > PST > NVS > DD > PBS > ECS. More
specifically, the first three features in the rank list have dominated weights than the rest. Since HA, WD,
and ECO are fully defined by the driver’s final destination, the parking facility historical availability, and
the parking facility layout, we expect that the driver’s parking decision can be highly predictable, which
eventually leads to good parking availability estimations using equation 1.
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Table 1. Model training with different feature sets

All Time (42202 decision events) Busy Hours (3953 decision events)
Model Precision Recall Precision Recall

Estimation Model 0.734 0.852 0.937 0.856
Simulation Model 0.738 0.854 0.944 0.869

Note: Busy Hours is defined from 10:30 am to 3:30 pm for cross-validation. Precision is defined as the number of correctly
predicted “take” decisions / the number of predicted “take” decisions. Recall is defined as the number of correctly predicted
“take” decisions / the number of all ground truth “take” decisions.

4.3 Model Training

To guarantee the quality of the training data, we filtered the events whose features may not be calculated
incorrectly, e.g. some trajectories are detected to have started from a non-entrance position. With the
features generated in Section 4.2, we trained a boosting tree model over the data after filtering, because it
is more robust to heterogeneous features. We tested the performance of our model over all experimental
time and the interval only includes busy hours, and then we compare it with a model that uses more
features, which are not accessible by ParkScan in real time but are believed to improve the accuracy of
parking decision models. For example, they include the availability of adjacent parking spots, the actual
spot states along driver’s search trajectory, and comparison between the current spot and the best spot
the driver has seen so far and some properties associated with the spot, e.g., obstacles or shadows.
The results of the 10-fold cross-validation results are shown in Table 1. The model used in ParkScan

to estimate posterior parking availabilities is called the estimation model. The model with additional
features is labeled as the simulation model, because this model simulates driver’s actual decisions by
including the features that only onboard drivers can see but ParkScan cannot access.

From Table 1, we obtain three key findings as follows. (i) The estimation model does not show a largely
degraded performance, even though the model only includes the features generated using historical data,
map data, and driver’s search trajectories and destination. This observation essentially suggests that
estimating parking availabilities based on the estimation model is feasible. (ii) The parking decision
model shows better performance during busy hours, which implies that ParkScan should have better
performance in busy parking time, i.e., exactly when drivers need parking availability estimation the
most. (iii) Either in busy hours or free hours, there are about 15% of driver’s parking decisions that
cannot be predicted (suggested by the recall). While these false negative parking decisions might come
from the potential errors contained in our dataset, it motivates us to combine the estimates from different
parking search trips so that we can mitigate the errors from a single observation.

5 REAL-TIME PARKING AVAILABILITY ESTIMATION

Based on the parking decision model constructed from human parking decision observations, this section
discusses how to use noisy parking search trajectories to generate probabilistic parking availability
estimation and how to fuse estimations from heterogeneous sources to mitigate potential errors in the
estimations from individual search trajectories.

To simplify the discussion, for a parking lot scenario, we envision the start of a driver’s search trajectory
(used in Section 5.1) is the entrance of the lot and a driver’s consideration set includes (needed in Section
5.2) all spots of the parking lot. Then, we present the estimation fusion framework in Section 5.3. Finally,
we discuss how to extend our parking lot scenario to a street parking scenario in Section 5.4, i.e., the
choice of the start of the search trajectory and all candidate spots for street parking.
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5.1 Trajectory Preprocessing

After receiving the parking search trajectory, ParkScan applies the map matching algorithm [30] to
translate the trajectory to a list of points along road segments or aisles in the parking lot and the paths
connecting the points. Since parking spots are along the streets or aisles, all spots on the generated path
are considered visited by the given search trajectory. Note that, even though each individual point in the
search trajectory may not be accurate, the path and visited spots generated using map matching are
accurate enough for ParkScan, except for a handful number of spots at the end of the search trajectory.
In ParkScan, we need to identify these spots because they are the candidates where the car actually
parked (called parking candidates). In the current ParkScan implementation, we set up a round area
centered at the trajectory ending position and consider all spots within that area parking candidates.

5.2 Estimating Posterior Availability for Visited Spots

For each of the pass-by spots (i.e., all the visited spots except for the parking candidates), the parking
search trajectory defines a decision event when the car passes by the spot and the human’s decision is to
ignore the spot.
Therefore, ParkScan computes the features in the way used in Section 4.2 and then leverages the

learned parking decision model to compute the likelihood of pu,π,i (¬ park | empty). However, the difficulty
of using Equation 1 is to estimate pu,π,i (¬ park), the probability that a driver u does not park in the spot
i for the trip π. This probability needs to be estimated per driver per timestamped destination, requiring
extensive fine-grained historical data. We decompose pu,π,i (¬ park) using the total probability theorem:

pu,π,i (¬ park) = pu,π,i (¬ park | empty) × pi (empty) + pu,π,i (¬ park | full) × pi (full). (4)

Since pu,π,i (¬ park | full) is 1 for everybody (i.e., nobody can park at a spot that is taken), by substituting
Equation 4 into Equation 1, we obtain the following formula:

pu,π,i (empty | ¬ park) =
pu,π,i (¬ park | empty) × pi(empty)

pu,π,i (¬ park | empty) × pi(empty) + pi(full)
(5)

where pi (empty) and pi (full) are driver/trip invariant and can be estimated easily from the historical
availability data. Once the likelihood pu,π,i (park | empty) is generated by the parking decision model,
based on the equation 5 we can compute the posterior availability probability pu,π,i (empty | ¬ park) for a
visited spot that is not taken.

The parking candidates, instead of reflecting the state when the car passes by, define possible transitions
from empty to full state, since there is a new car parked in that area. We use the prior knowledge that
GPS errors are in general Gaussian noise [30]. Therefore, we distribute the transition probability 1 (for
one newly parked car) to all parking candidates proportional to exp(−d2/σ2), where d is the distance
from the spot to the reported parked position, σ can be estimated using the method provided in [30].

5.3 Estimation Fusion

As discussed previously, the parking search trajectories provide the transition probability and availability
estimates at different times of day, which individually may contain considerable noises. In this section, we
fuse estimations for the same spot together to obtain more robust estimations.
We regard the state estimation for a spot i as a hidden Markov process (HMM) shown in Fig. 8. We

partition the time into a sequence of intervals, within which the state of the spot will remain unchanged,
e.g. 30 seconds. This is because parking a car or leaving from a spot usually takes from seconds to minutes.
We define the true state of the spot in the interval t as the hidden variable St, which is either full or
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Fig. 8. Hidden Markov process for probabilistic estimation updates

empty. At some intervals, e.g., interval t and interval t+ k in Fig. 8, parking search trajectories from
participant drivers may cover this spot and generate two state probability estimates, pu,π,i (empty | ¬ park)
and pu′,π′,i (empty | ¬ park). Due to parking or vacating events of both participant and non-participant
drivers, the true state may change with some transition probability, e.g. change from empty to full by
a parking event. Since the transition probability can be achieved from driver’s parking candidates or
historical parking/vacating rates, the HMM process targets to find the best combination of states, whose
accumulative probability has the highest value among all possible accumulation paths including transition
probability and state probability. In our case, we only focus on the latest state of a spot, i.e., full or
empty, so we normalize the full and empty probabilities at the last step, according to the sum of all
probability accumulation paths ending with the current full or empty states.

Finally, the remaining problem is to estimate the state transition probabilities between two consecutive
intervals. From the historical data, we can obtain the historical transition probability, e.g. parking
probability can be computed by dividing the total number of parking events by the total length of an
interval. Since the interval time is short, the historical transition probability will be very small. Therefore,
when there is a transition probability generated by a parking spot in an interval, this transition probability
will be used to update the historical value and dominate the transition probability during that interval.

Note that, the estimation fusion process, i.e., HMM process, does not necessarily end at an interval
when a pass-by event or transition observation from a participant driver is detected. In most of the time,
HMM changes the state estimation of a spot using the historical transition probability, which in fact
fades the previously estimated state and gradually makes it converge to the historical availability rate.
In this sense, the ParkScan estimation fusion algorithm naturally solves the spot availability dynamism
under a limited system penetration rate.

5.4 Street Parking Extension

The discussion in the previous section is based on two assumptions: (i) the start of the searching trajectory
is known; (ii) the consideration set, i.e., candidate spots that a driver would like to consider for parking,
are also known. These two assumptions are easy to validate for a parking lot scenario: the entrance
is the start and all spots in this parking lot are included in the consideration set. However, it is not
straightforward to obtain such information for a street parking scenario.
In this work, ParkScan utilizes the intuition that when a driver approaching its destination from

distance, the likelihood pu,π,i (¬ park | empty) gradually decreases, because closer spots to the final
destination provide a shorter walking time. Based on this intuition, the start of the search trajectory

can be inferred using the first point along the driving path where ˆpu,π,i (¬ park | empty) goes above a
pre-defined threshold. Note that the start of the search trajectory does not need to be very accurate,

because ˆpu,π,i (¬ park | empty) for those spots are usually approaching 1, providing no more information
than the historical data. Moreover, the features closely related to the start of the search trajectory, e.g.
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parking searching time, are not the most impactful ones in the parking decision model according to
the discussion in Section 4.2. For the consideration set, if we have enough historical data, we find the
maximum distance from the spots ever taken for the same destination and then use that as a radius to
consider candidate spots; if not, we use the distance from the start of the trajectory estimated above to
infer the candidate spots.

6 PARKING LOT EVALUATION

In this section, we test ParkScan with the data collected from two real-world parking lots to investigate
its performance in the parking lot scenario.

6.1 Experiment Methodology

We conducted the parking lot evaluation in two different parking lots. The first parking lot (called parking
lot 1 hereafter) is the one mentioned in Section 4.1. Since our parking decision model is learned from
parking lot 1, we also include a second parking lot (called parking lot 2) to validate the applicability of
ParkScan. As shown in Fig. 9, parking lot 2 has 40 parking spots (including two handicapped spots).
People come from both exits of the parking lot and go to a grocery store. Since people visit the grocery
store at will and they spend on average 15 mins for each visit, the occupancy rate of parking lot 2 is
generated by continuous parking and leaving events.

Fig. 9. Layout of parking lot 2

We use the parking search trajectory and ground truth availability collected in Section 4.1 as the
request set for the parking lot 1. Similarly, for the parking lot 2, we also video recorded the real parking
trajectories and parking lot availability ground truth in 3 weekdays during the busy hours of the grocery
store (from 3:15 pm to 5:15 pm).
For experiments in both of the parking lots, we use the parking decision model learned from parking

lot 1 in ParkScan. Since parking lot 2 has a different layout and a different visit pattern, the results for
parking lot 2 validate the generalization of the parking decision model learned from parking lot 1. For
the experiments on parking lot 1, we use a 10-fold cross-validation (based on a chronological partition by
dates) to avoid the over-fitting problem for the parking decision model.

6.2 Baseline Solution and Evaluation Metrics

Since no prior study has looked into the spot-level background parking availability estimations (details
are given in the related work section), we use the historical availability rate at each spot as the baseline
solution for the comparison. We measure the deviation of the probability estimations from the ground
truth availability as the estimation error, defined as:

errori =

⎧⎨
⎩

1− ˆpi(empty), if spot i is empty

1− ˆpi(full), otherwise.

(6)
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where errori represents the error of spot i; ˆpi(empty) and ˆpi(full) are the estimated probabilities for the
spot i to be empty or full, respectively.

Estimation errors in equation 6 demonstrate the accuracy for a particular estimation. To evaluate the
estimation performance for a group of estimations, we defined the mean absolute deviation (MAD) as
follows:

MAD =
1

N

N∑
k=1

| errork |, (7)

where errork stands for the error of the k-th estimation among all N estimations.
Finally, we defined another metric, i.e., relative error reduction (RER), to measure the accuracy

improvements produced by ParkScan and comparing it to the baseline method:

RER =
errorbaseline − errorparkscan

errorbaseline
, (8)

where errorbaseline and errorparkscan denote the errors for the baseline estimations and errors for the
estimation using ParkScan. The RER for MAD can also be defined similarly. Note that, a positive RER
value illustrates that the ParkScan estimation accuracy outperforms the baseline estimation.

6.3 Evaluation Results

In this section, we present the results for (i) the spots visited by a single parking search trajectory (called
one-pass estimation), and (ii) all the spots within the parking lot considering multiple visits from different
drivers at different times (called estimation fusion experiment).

6.3.1 One-pass Estimation. In this evaluation, we apply the method presented in Section 5.1 and
Section 5.2 to estimate the probabilistic availabilities for the spots that are along any search trajectory.
We compute the MAD for all estimations and then calculate the RERs for the MAD using Equation 8.

Fig. 10. One-pass estimation results
in parking lot 1

Fig. 11. One-pass estimation results
in parking lot 2

Fig. 12. Mean RERs for various pen-
etration rates under different experi-
ment settings

Fig. 10 and Fig. 11 show how the RERs change in two experimental parking lots while we generate
estimations for the only those visited spots whose pu,π,i (park | empty) are bigger than the given likelihood
threshold. Moreover, we also added the ratio of visited spots which produce estimations out of the total
number of spots visited. The results show that even considering the estimation using only a single pass-by
visit from one driver, ParkScan provided over 15% estimation accuracy improvements in parking lot 1 and
40% in parking lot 2 compared to the historical estimations. Moreover, as we raise the pu,π,i (park | empty)
threshold, the estimation accuracy continuously rises. In particular, one-pass estimation could reduce the
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MAD by over 70% for the spots whose pu,π,i (park | empty) are larger than 0.9 in parking lot 1 and over
50% in parking lot 2 for the same likelihood threshold.

By comparing Fig. 10 and Fig. 11, we found that different layouts and visit patterns in the two parking
lots change the coverage rates and RERs defined by the same likelihood threshold. For instance, since the
walking distance feature for the spots in parking lot 2 is smaller than that in parking lot 1, the results
for parking lot 2 show larger pu,π,i (park | empty) likelihood value in general. However, if we consider all
spots visited by the parking search trajectory (left-most bar in either figure), parking lot 2 actually shows
improved RER, which suggested that ParkScan system has a good generalization property even when
using the default parking decision model.

6.3.2 Estimation Fusion. In this evaluation, we apply an estimation fusion algorithm presented in
Section 5.3 to provide the parking availability estimations for any spot each minute. Since the number of
participant drivers influences the spatiotemporal coverage of spot visits along detected search trajectories,
we also test different penetration rates to show the scalability of the ParkScan system. For the performance
measurement, we calculate the MAD for all spots in each minute if there is at least one on-going parking
search process. The MADs from ParkScan are also compared to the historical estimation MADs to present
the RERs.
RERs of MAD for different penetration rates. Fig. 12 demonstrated the mean RERs under

different system penetration rates for different parking lots or time intervals, i.e., all time or only busy
hours. One can find from the figure that ParkScan reduces over 11% of MAD at a 5% penetration rate,
and the performance gains grow when the penetration rate increases. By comparing the all time results
(i.e., the first bar in each cluster) and the busy time results (the second bar in each cluster) in parking lot
1, we find that the parking availability estimation performance of ParkScan is obviously better during
busy parking hours. This is caused by two reasons: (i) the searching trajectory is usually long during
busy hours, which increases the coverage of the visited spots along the search trajectories; (ii) a drivers
parking decision during the busy parking hours is more predictable, shown by the high prediction model
accuracy presented in Section 4.3. These two reasons bring about the better performance for ParkScan
during busy hours, exactly when people need the system the most. Finally, by comparing the RERs in
parking lot 1 and those in parking lot 2, we confirmed that the default parking decision model works well
in the new parking lot setting (i.e., parking lot 2), leading to even better RERs during the busy hours.

Fig. 13. CDF of RER for various pen-
etration rates in lot 1 (all time)

Fig. 14. CDF of RER for various pen-
etration rates in lot 1 (busy time)

Fig. 15. CDF of RER for various pen-
etration rates in lot 2 (busy time)

To understand the distribution of performance improvement among the measurements at different times
of day (e.g. whether it is influenced by only heavier striker), we present the CDF of RERs in different
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settings in Fig. 13 to Fig. 15. All three figures demonstrate that the RERs are normally distributed.
Moreover, the CDF of RER curves are generally pushed to the up-left side when the penetration rate
increases, implying that higher penetration rates raise both estimation accuracy and coverage.
Comparison of MAD by using only one-pass estimation and estimation fusion. The RER

values in the estimation fusion experiment are numerically less impressive than those from the one-pass
estimation, e.g. by comparing Fig. 12 to Fig. 10. However, this is because in the estimation fusion
experiment, we consider all parking spots in each one-minute interval instead of evaluating only the
covered spots at the visited time. To show the benefits of estimation fusion algorithms presented in
Section 5.3, we computed the MAD of the estimation fusion results and that using the one-pass estimation
from the latest spot visit to calculated the RER between these two MADs. Fig. 16 demonstrated positive
RERs of estimation fusion results with respect to the one-pass estimation at all penetration rates, meaning
that our estimation fusion algorithm generates better spot availability estimations. In particular, it could
reduce the MAD of one-pass estimation by up to 55% in the parking lot 1 experiments. Since we only
have 3 days historical data in parking lot 2, the statistics, especially the fill/vacating rate statistics, are
not reliable. As a result, parking lot 2 shows less improvement in Fig. 16. However, the parking lot 2
experiments to some extent demonstrated the robustness of our estimation fusion method over the noise
of historical statistics, because the estimation fusion results still show improvements compared to the
one-pass estimation (positive RERs) for parking lot 2.

Fig. 16. RERs of estimation fusion with re-
spect to the one-pass estimation for various
penetration rates in different settings

Fig. 17. RERs of ParkScan estimation with
respect to the coarse-grained solution for
various penetration rates in different settings

Comparison of MAD by using ParkScan and the coarse-grained solution. Though the spot-
level historical availability rate is used as the baseline to conduct most comparisons, we finally compute
the MAD of ParkScan and that generated using PhonePark [44] to compare ParkScan with prior coarse-
grained solutions. Note that, PhonePark also combines the detected realtime parking events and historical
statistics as ParkScan does but uses Kalman filter to estimate the parking availability rate of a street
parking section or a parking lot. Moreover, PhonePark additionally assumes that the penetration rate of
the participant drivers is known in the targeted parking section. Since PhonePark cannot differentiate
the spot-level parking availability within the targeted section, for the parking lot scenarios, we use the
parking availability of the whole lot as that of each spot to compute the MAD. Fig. 17 demonstrates that
in most cases ParkScan provides better spot-level availability estimation than PhonePark (by positive
RER values). The only exception happens in parking lot 1 when the penetration rate is 0.05 during the
busy time and it is caused by two reasons: (i) We provide PhonePark with the ground-truth penetration
rate (not used in ParkScan), which enables PhonePark to very accurately estimate the overall parking
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Table 2. Seattle dataset description

Pay Stations 121 stations (road segments)
Parking Transactions 63960 parking requests

Parking spots 1276 spots
Time period weekdays from 2015-03-02 to 2015-03-27

availability rate of the parking lot. (ii) The vast majority spots in parking lot 1 are usually taken during
the busy time, meaning that the spot-level parking availabilities are all close to the overall availability of
the parking lot. However, ParkScan outperforms PhonePark by up to over 40% when the penetration rate
increases, or when looking at parking lots with different availability distribution pattern (e.g., parking lot
2 has fluctuant availability since people frequently come to and leave the store).

6.3.3 Evaluation Summary. During the parking lot evaluation, we collected driver’s real-world parking
search trajectories and tested ParkScan in two different parking facilities under different penetration
and time interval settings. The key findings from the parking lot evaluation are as follows: (i) ParkScan
reduces the estimation errors, compared to historical estimations for visited spots by a single parking
search trajectory (shown in Fig. 10 and Fig. 11). This implies that ParkScan has the ability to work at
an extremely low penetration rate, e.g. as low as only a single participant driver. (ii) ParkScan effectively
reduces the estimation errors for all spots at the moment when drivers need the estimation map (shown
by Fig. 12 to Fig. 17). (iii) During the experiment, we learned the parking decision model from parking
lot 1 and applied it to a different parking lot (i.e., parking lot 2) with a different layout and different visit
patterns. The good performance of ParkScan in parking lot 2 suggested that the parking decision model
has good generalizability and does not need to be retrained for every new deployment.

7 STREET PARKING EVALUATION

As mentioned in Section 5.4, we treat on-street parking as a special case, where each individual driver
has her/his own start of a search trajectory and a consideration set of all possible spots. In this section,
we investigate the performance of ParkScan in the street parking scenario.

7.1 Methodology

We leverage the on-street parking facility map and the parking transaction dataset [14] from Seattle,
WA in the street parking evaluation. The parking facility map has the information of all the parking
payment stations, including the station ID, the type description, the GPS coordinates, the effective time
and so on. Based on the station coordinates, we associate the parking station with a road segment using
OpenStreetMap and the nearby parking spots based on data collected from Google Street View.

For the evaluation setup, we first select the experiment area. After visualizing the parking transactions
(shown in Fig. 18), we find that Belltown area is the hottest parking region in the city. Since a parking
crowd-sensing system is most needed in a busy parking area, we choose the region that is bordered by
5th Ave, Vine St., Elliott Ave., and Stewart St. as our experiment area. We filter the city-wide parking
transaction data to only preserve the data from the experiment area (its statistics is shown in Table 2
and its temporal distribution of transactions is shown in Fig. 19). Note that, only paid on-street parking
spaces are available for public use in the experimental area, so the parking transactions cover the vast
majority of all parking requests in this area.
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Fig. 18. Hottest parking
area of Seattle

Fig. 19. Average parking transaction
count in a day

Fig. 20. Occupancy rate distribution

7.1.1 Total Parking Requests and Parking Availability. The experiment needs the parking requests, i.e.
the time-destination pairs, to initiate parking search trips. Since parking transaction is associated with a
payment station, in this experiment, we assume the driver’s destination is a random point along the street
where the payment station is located. Moreover, considering potential parking violations, we use the
model between the paid parking time and the total parking time presented in [36], to estimate the ratio
of paid parking requests among all parking requests on each road segment. We use the estimated ratio to
super-sample the parking request set generated by the parking transactions, and obtain the extrapolated
parking requests representing all parking demands. Once the total parking request set are identified, we
also get the ground-truth of the parking availability at any time of a day (statistics are shown in Fig. 20),
because it is essentially a parking/leaving event that causes the parking availability to change.

7.1.2 Parking Search Simulator. Since there is no parking search trajectory in the transaction dataset,
we rely on a simulator to generate the trajectory and the final parked spot. Given a final destination and
a starting point far enough from the destination, the parking search simulator assumes that the driver is
rational and always turns to the direction that minimizes the expected total travel time (driving time plus
walking time) based on the historical availability. When an available spot is found, the simulator utilizes
our parking decision simulation model, which takes extensive features than the estimation model (refer
to Section 4.3 for the simulation/estimation model), to decide whether that spot should be taken. This
process iterates until a spot is taken eventually. Note that a distance threshold is defined as a parameter
for the parking simulator to determine the consideration candidate spots. This parameter also defines the
start of the search trajectory, which is the first point located within the distance threshold when the
vehicle approaches its destination. We tuned this parameter in Section 7.2.

7.1.3 Experiment Process. After the experiment starts, the parking requests are picked one by one
from the total parking request set to simulate the parking search process, which includes the parking
search trajectory and the final parked spot using the parking search simulator (Section 7.1.2). The state
of a taken spot will be updated in the ground truth availability map so that subsequent drivers will not
park there until the parked car’s paid parking time expires.

During the experiment, the ParkScan system obtains only the whole movement trajectory and the final
destination. ParkScan infers the start point of the search trajectory and the driver’s consideration set and
then estimates the spot-level parking availability. Since the ground truth availability map is maintained
by the simulator, the estimation results from ParkScan can be evaluated.

We extracted the parking request set for all workdays in March 2015 to generate historical knowledge
information, i.e., historical parking availability rates and historical park/vacate probabilities (discussed in

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 3, Article 78.
Publication date: September 2017.



Your Search Path Tells Others Where to Park • 78:19

Section 5.3) at the road segment level. However, due to the extensive computation cost to simulate the
step-by-step vehicle movements, we chose the parking requests for one day (March 6, 2015) from 8:00 am
to 5:00 pm to evaluate the parking estimation performances of the proposed ParkScan system.

7.2 Validation of Experiment Settings

Fig. 21. The CDF of occupancy differences
generated by different simulation algorithms

Fig. 22. Parking occupancy at
9:00 am generated by our simula-
tion algorithm

Fig. 23. Parking occupancy at 9:00
am generated by real parking trans-
actions

To verify our simulation design and tune the parameter of distance thresholds in the parking search
simulator, we run the parking search simulator presented in Section 7.1.2 for March 6, 2015, starting from
8:00 am to 5:00 pm to simulate the cars’ final parking positions. As the baseline, we also test another
simulator which assumes drivers will take the first available spot while searching for parking. We compare
the resulting occupancy map from the two simulators to the ground-truth occupancy generated using the
parking transaction. An ideal simulator with a good parameter setting should generate realistic parking
search trajectory and thus incur smaller occupancy difference.

The comparison result demonstrates that our simulation method relying on parking decision simulation
model substantially outperforms the baseline simulator when we set the distance threshold as 150 meters.
Fig. 21 shows the road segment level occupancy differences after 2 hours of the simulation. In particular,
95% of the road segments have an occupancy difference of fewer than 3 cars. Moreover, since quite a
few car’s final parking positions are just one road segment shifted from the actual parking position, the
actual occupancy map shows only subtle differences, e.g. Fig. 22 and Fig. 23 visualize the heap map of
the two resulting occupancy maps at 9:00 am. These results demonstrate that our way to simulate the
driver’s parking search trajectory is realistic.

7.3 Evaluation Results

In this section, we use the same metrics and evaluation process as in Section 6.3 to test the performance
of ParkScan in the street parking scenario.

7.3.1 One-pass Estimation. Fig. 24 illustrates the RER and coverage rate results from the one-pass
experiment in the Seattle street parking scenario. One-pass estimation computes the availability prediction
for all spots along the reported search trajectory. Similar to the parking lot results, the RER values in the
street parking one-pass experiment also increase as pu,π,i (park | empty) threshold values increase. However,
the coverage rate drops sharply from the threshold value pu,π,i (park | empty) = 0.2. This phenomenon is
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Fig. 24. One-pass estimation results in the
Seattle street parking experiment

Fig. 25. Mean RERs for various penetra-
tion rates in the Seattle street parking
experiment

reasonable because the drivers may visit a lot of spots along the reported driving trajectory, however,
they only consider the “good” parking candidates limited to a smaller number of spots that are close to
the drivers’ final destinations. Our parking decision model naturally differentiates the “good” candidates
and the rest by generating different pu,π,i (park | empty) likelihood values. Motivated by this finding, we
set the likelihood threshold of pu,π,i (park | empty) as 0.2 in the estimation fusion process to determine
the start position of each search trajectory (refer to Section 5.4 for details).

7.3.2 Estimation Fusion. We also applied the estimation fusion algorithm presented in Section 5.3 in
the street parking scenario. For the performance measurement, for each minute we calculate the MAD for
all spots in the simulation urban area, if there is at least one ongoing parking search process. The MADs
from ParkScan are compared with the historical estimation MADs to compute the RERs.

Fig. 26. CDF of RERs for various pene-
tration rates in the Seattle street parking
experiment (all time)

Fig. 27. CDF of RERs for various pene-
tration rates in the Seattle street parking
experiment (busy time)

RERs of MAD for different penetration rates. Fig. 25 demonstrates the mean RERs under
different system penetration rates over different time interval settings. In the street parking experiment,
when the penetration rate is 5%, we achieve 2.5% RER. However, when the penetration rate rises to 40%,
the RER of MAD grows to 34.1%. During the busy parking hours, the RERs increase from 12.9% at a
5% penetration to 42.8% at a 40% penetration. The trends are in accordance with the findings in the
parking lot experiment. Fig. 26 and Fig. 27 further illustrate the CDF of RERs for the street parking
experiment for all intervals throughout the experiment and for busy parking hours, respectively. Similar
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to the parking lot experiment, the benefits in the street parking experiment are also normally distributed
among most time. In addition, a higher penetration rate pushes the CDF of RER curve to the up-left
side, implying increased benefits in both estimation accuracy and coverage. In the street parking all time
results (Fig. 26), low penetration rates sometimes lead to worse estimation accuracies comparing to the
historical data. This is because we use a stochastic process to make parking decisions in the parking
search simulator: even if the predicted pu,π,i (park) is higher than 0.5 for an available spot, there are
still chances that a driver will ignore that spot. When the penetration rate is low, this random decision
process generates considerable noise, which causes wrong predictions at some visited spots. Fortunately,
this type of errors is mitigated as the penetration increases or during the busy parking hours.

Fig. 28. RERs of estimation fusion with
respect to the one-pass estimation for var-
ious penetration rates

Fig. 29. RERs of ParkScan estimation
with respect to the coarse-grained solu-
tion for various penetration rates

Comparison of MAD by using only one-pass estimation and estimation fusion. Fig. 28 d-
emonstrates positive RERs of estimation fusion results in street parking scenario with respect to the
one-pass estimation at all penetration rates, meaning that estimation fusion produces better spot
availability estimations in the street parking scenario. The estimation fusion shows less improvement in
the street parking scenario than the parking lot 1 experiment. This is because the park/vacate probabilities
estimated from the historical data in the Seattle parking transaction are different from the real rate
generated from our vehicle parking simulation. However, the positive RER values also demonstrate the
robustness of our estimation fusion algorithm over noise park/vacate rate estimations.
Comparison of MAD by using ParkScan and the coarse-grained solution. Similar to the pa-

rking lot evaluation, we also compare the spot-level availability estimation using ParkScan and the
coarse-grained availability estimation using PhonePark [44] in the street parking scenario. We provide
the PhonePark with ground-truth penetration rates and use Kalman filter to combine the detected
real-time parking events and historical statistics. The section unit used in PhonePark is each street
parking section, i.e., road segment. Fig. 29 demonstrates that ParkScan provides more accurate spot-level
availability estimation than PhonePark (by positive RER values). Moreover, by comparing the RER
values at different penetration rates, we find that the performance improvement of ParkScan increases
with rising penetration rate in the street parking scenario.

RERs of MAD for different likelihood thresholds. Section 7.3.1 determined the likelihood thresh-
old to detect the start of a search trajectory and the consideration candidates set. In this evaluation, we
tested the threshold values from 0.0 to 0.8 under different penetration rates to evaluate the likelihood
threshold configuration. Fig. 30 and Fig. 31 show the CDF of RERs for different likelihood settings
when the penetration rate is 0.1. In both figures, a threshold of 0.2 provides the best performance,
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which validates our setting of the likelihood thresholds in Section 7.3.1. This result is consistent with all
penetration rates in both experimental interval settings, though, due to the limit of space, we do not
present the figures for other penetration rates. Interestingly, it is also shown in Fig. 30 and Fig. 31 that
different thresholds achieve similar results. This implies that ParkScan is not very sensitive for likelihood
thresholds, so this value does not need to be precisely tested for each real-world deployment.

Fig. 30. CDF of RER for various park proba-
bilities (all time, penetration rate = 0.1)

Fig. 31. CDF of RER for various park proba-
bilities (busy time, penetration rate = 0.1)

7.4 Evaluation Summary and Limitations

Our findings from street parking experiments are as follows: (i) ParkScan reduces the estimation errors
compared to historical estimations, when considering only visited spot at the visit moments (shown in
Fig. 24). (ii) ParkScan reduces the estimation errors for all spots at the moment when drivers need the
estimation map (shown in Fig. 25 to Fig. 29). (iii) The method to estimate the parking search start and
consideration set improves the performance on ParkScan for the street parking scenario (as shown in Fig.
30 and Fig. 31). Moreover, ParkScan is not very sensitive to threshold values, which determine the park
search start. So we can start from a default value (e.g. 0.2) for the real world deployment.

In the street parking experiment, since we do not have as detailed data as the parking lot experiment. We
made a few assumptions (e.g., a driver’s final destination is a random point along the parked road segment;
a simulator starts the parking simulation from a random point 150 meters from the final destination) to
build the experiment setting. Moreover, we made an approximation to estimate the historical statistics in
the unit of road segments instead of spots. The assumptions on the experiment setting mainly influence the
factuality of the ground truth in our simulation towards the real situation in Seattle. When assumptions
change, the inputs of ParkScan (i.e., search trajectory and final parked position) also change. Therefore,
we believe the influence of these assumptions on the ParkScan performance measurement is low, especially
after we have validated the results of these settings in Section 7.2. The approximation of the historical
statistics is due to the fact that we only have road segment level information (i.e., parking transactions are
associated with payment stations at each road segment). We acknowledge that this approximation may
influence the evaluation results, because the historical availability rate is the baseline algorithm. However,
since our ParkScan is also fed with the historical statistic data with the same unit, the improvement on
this approximation will also improve the performance of ParkScan.

8 DISCUSSION

Acquisition of driver’s destination and search trajectory ParkScan parking availability estimation
leverages the driver’s destination and the parking search trajectory, which is not uncommon in other
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parking crowdsourcing systems, e.g., [28]. The final destination can be obtained from vehicle navigation
system or estimated using place visit detections and indoor localization technologies [15, 18, 28]. Note that,
ParkScan may work with any parking/unparking detection technique to detect the parked positions and
can tolerate location noises. Given that vehicle tracking becomes more accurate in both outdoor [1, 16]
and indoor environments [39, 47], estimating the parking trajectory is increasingly feasible.
Generalization of the parking decision model Section 4 builds the parking search model for a
group of people that use a particular parking lot. Since the estimates from multiple sources are fused to
eliminate the individual errors, ParkScan works well even if the model is not tailored for each participant
driver. However, we do acknowledge that the parking decision model of individuals may be different,
for instance, some driver may prefer shadow spots during the summer. Once the ParkScan system has
been installed in the driver’s smartphone, we could use opportunistic sensing to generate samples to
refine driver’s decision model, e.g., parking at a spot generates a positive parking decision sample, and
ignoring a spot, which according to a dedicated parking status sensor or our estimation is almost 100%
sure available, generates a negative parking decision sample. We believe this will further improve the
performance of ParkScan.
Historical data and parking layout map ParkScan leverages the historical data when estimating
the background parking availability. Without the initial historical data, ParkScan may need a long time
to converge. Fortunately, given the development of the internet of things, we can retrieve historical
statistics from many government resources (e.g., we compute historical statistics using the parking
transaction dataset in Seattle) and online parking information providers (e.g. ParkMe [13] provides the
historical parking availability of many cities). Parking layout maps are also available from map providers
or government open datasets. Inspired by the recent advances to build road and building maps from
satellite images [27, 46], parking layout maps can also be potentially extracted using similar technologies.
Enhancement with sensor data, coarse-grained estimation and more powerful models Park-
Scan currently relies on a Bayesian inference model to estimate spot-level parking availability. The
Bayesian model has minimum deployment requirements, i.e., it only needs the parking search trajectory,
trip destination, historical statistics, and facility layout to estimate parking availability. However, the
Bayesian model also has limitations. For instance, the current ParkScan system may provide biased
estimations, because based on the Bayesian model, passing by a spot without taking it never makes the
availability probability higher than the historical availability rate. While some applications, e.g. routing,
just need the relative availability rate instead of the absolute values, we argue that ParkScan can be
enhanced by using dedicated parking sensor data, coarse-grained crowdsourcing approaches, and more
complex models. For example, the ParkScan estimation result of a spot can always be over-written
by the sensor monitoring the same spot. Even if only the coarse-grained parking availability can be
measured using sensors, e.g. gate counter, or coarse-grained crowdsourcing approaches, we can use the
coarse-grained availability statistics to renormalize the ParkScan results. Finally, if adequate data is
accessible for a parking facility, more powerful models with additional features can be explored. For
instance, traffic demand (e.g. taxi pickup/drop-offs), POIs data, and social network check-ins can be used
in addition to the P (empty |¬ park) as new features. We expect these features can be combined together
(e.g. by tensor decomposition) to improve the accuracy of the parking availability estimation.

9 RELATED WORK

ParkScan is a crowdsourcing system relying on a parking decision model to compute probabilistic posterior
estimations of spot-level parking availability. So both smart parking systems and parking search process
modeling are related to our work.
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Table 3. Smart parking system survey

Scenarios Dedicated Sensors Dedicated Sensor Free
Park/Unpark Event Detection Spark[21], RFID or computer vi-

sion solutions
ParkSense[29], Updetector[22],
PhonePark[44], PocketParker[28],
BluePark[39]

Background
Availability
Detection

Coarse-grained ParkNet[26], Parking Gate
Counter†, etc.

PhonePark[44],
PocketParker[28]†,
ParkGauge[8]†, SPIRE[33]†

Fine-grained ParkNet[26], SFPark[37], LA Ex-
press Park[19], QuickSpot[24]

ParkScan (This work)

Note: † solutions only for off-street parking usage.

9.1 Smart parking systems

Table. 3 surveyed the smart parking systems, which can be divided into solutions based on dedicated sensors
and dedicated-sensor free solution. Smart parking systems using dedicated sensors have been excessively
studied back to the last decade [12]. These solutions can be used to detect the parking/unparking event
for a particular vehicle [21] or detect the availability of spots [19, 37]. Recently, the sensors are deployed in
a mobile fashion to increase the coverage [26]. However, suffering from the cost issues in installation and
maintenance, these solutions are deployed in very limited regions. The dedicated-sensor-free solutions rely
on the sensors already built in smartphones or other wearable devices. They use various sensors to detect
the transition between driving and walking to estimate the parking/unparking events [22, 28, 29, 39, 44].
Systems use either sampling theory [44], or use some special heuristics for off-street parking, e.g. a parking
lot is very likely to be full if a car goes in and comes out without parking inside [28, 33] or parking
search time (and lower-level vehicle maneuvers, e.g., brakes and turns) is related to parking availability
statistics [8], to infer background parking availabilities under low penetration rates.

Our work looks into the human’s probabilistic parking decision model, which is dedicated sensor free and
can be used both for on-street and off-street parking scenarios. Moreover, the system provides fine-grained
and reliable estimations under a low penetration rate rather than only coarse-grained statistics.

9.2 Parking Behavior Modeling

The modeling of drivers’ parking behavior in the transportation domain can be divided into parking
choice modeling and parking decision modeling. The parking choice model is a decision maker that selects
a parking space from given options. Many data-driven parking choice models have been proposed, e.g.
[4, 7, 10, 43]. Prior studies on the parking decision model (the decision maker to decide whether to take
the current spot or not) mostly use ad-hoc models without using real-world data, e.g. [3, 25, 40, 45], or
assume that drivers are fully rational when facing parking decisions or routing choices [5, 23, 41, 42]. The
only data-driven study is based on lab questionnaires [6]. Nevertheless, the behavioral studies in both
categories show homogeneity of the models among various users and parking facilities [6, 10].
Our paper applied a data-driven approach to learning the parking decision model from real-world

parking decision events with human decisions. We automate the data collection process through computer
vision techniques and thus make the calibration of parking decision models practically feasible. To the
best of our knowledge, this is the first work that extracts fine-grained trajectory data and individual
parking decisions to build a parking decision model.
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10 CONCLUSION

This paper presented a parking availability crowdsourcing system, ParkScan, based on the key idea that
the behavior of a parking seeker’s ignoring a visited spot probabilistically implies the unavailability of
that spot. We collected an extensive dataset containing 8,000 vehicle trajectories and over 55,000 human
parking decisions, and we utilized a data-driven approach to building a parking decision model. Using
the learned model, we provided an efficient way to estimate the priors used in the Bayesian rule and
presented an approach to combine estimations from multiple spot visits covered by different parking
search trajectories. Finally, we evaluated the ParkScan system using real-world data both from the
parking lot and the street parking scenarios. Both of the experiments show that ParkScan improves the
fine-grained parking availability estimations, even under extremely low penetration rates.
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