
9

P2-Loc: A Person-2-Person Indoor Localization System in On-Demand
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On-demand delivery is a fast developing business where gig couriers deliver online orders within a short time from merchants
to customers. Couriers’ accurate indoor locations play an essential role in the business. Most of the existing indoor localization
methods cannot be applied in practice due to the high cost or data unavailable on off-the-shelf smartphones. This paper explores
a new angle to solve the problem in a relative and infrastructure-free fashion. We design a person-to-person localization system
that can (1) detect encounter events via Bluetooth on couriers’ smartphones, and (2) infer couriers’ relative locations to all the
indoor merchants via deep learning on a graph neural network. The system is infrastructure-free, map-free, and compatible
for off-the-shelf devices. We deploy the system on a real-world industry platform. The system runs on the smartphones of
4,075 couriers around 79 merchants for a month. The evaluation in a mall area shows that P2-Loc improves the mean average
error compared with state-of-art infrastructure-based, report-based, and encounter-based methods. We also use an application
analysis based on real-world orders and trajectory data to show that the P2-Loc can save around $40,000 for the platform
every day with improved indoor localization results.
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1 INTRODUCTION
Nowadays, on-demand delivery [14, 16, 79, 86] is an emerging business for Gig Economy [33] where gig workers
deliver orders (e.g., food) within a short time (e.g., 30 minutes) from merchants to customers. This business grows
rapidly with several on-demand delivery platforms worldwide (e.g., DoorDash [17] and Eleme [16]).

To achieve timely delivery, couriers’ real-time localization is one of the indispensable supporting services involv-
ing all the stakeholders including couriers, merchants, customers, and platforms such as courier navigation [85],
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merchants’ order preparation [18], status tracking for customers [19], and platform order dispatching [86]. While
outdoor locations can be obtained by smartphone GPS accurately [51], indoor locations are difficult to acquire
due to the weak GPS signal. Given many merchants’ shops are located in multi-story malls in urban areas (e.g.,
9,562 shops located in 576 the malls in Shanghai City), couriers’ indoor localization becomes the bottleneck of
improving the user experience and operational efficiency in on-demand delivery.

The state-of-art indoor localization solutions can be organized using the following two-dimensional taxonomy:
• Absolute Versus Relative. Absolute localization refers to localization in a single predetermined coordinate
system (e.g., GPS) or map (e.g., floor plan) with concrete coordinates. Relative localization refers to localization
in the context of one’s neighbors or local environment [44, 60], usually with additional ranging or odometry
information.
• Infrastructure-based Versus Infrastructure-free. In infrastructure-based solutions, some infrastructures such
as Wi-Fi APs [7, 39, 41, 63, 75, 76], LED fixtures [45, 67], RFID tags [71], and PIR sensors [47, 50] are used as
anchors infrastructures to localize the nearby target devices but introduce a high cost for deployment in multiple
environments. Particularly, a Bluetooth beacon system, aBeacon [16], was build by Alibaba, which cost more
than $100K and retired within two years. In infrastructure-free solutions, landmarks such as acoustic [53, 66],
light [84], magnetic [70], and electromagnetic [48] are mapped to fixed locations on floor plans. These methods
usually introduce a high cost of maintaining a fingerprints database.
Given the practical limitations, absolute localization is inapplicable due to no accurate GPS or sufficient

floor plans (details in Section 2.1.), and infrastructure-based methods are inapplicable due to high cost across
multiple environments. Admittedly, relative infrastructure-free localization has been studied (e.g., TransLoc
[79]), where they only use couriers’ reporting at merchants to obtain anchor information. However, the sparsity
and uncertainty of couriers’ reporting behavior lead to unsatisfactory performance in accuracy and robustness,
severely restricting the upper-layer applications.
We explore couriers’ indoor encounters as an opportunity to advance the state-of-practice. The encounters

can play a key role in couriers’ indoor localization for two reasons (details in Section 2.2): (i) frequent indoor
encounters convey comprehensive spatial-temporal information that can be aggregated and shared between
present and subsequent encounters; (ii) encounter events among couriers can be detected at low cost via Bluetooth
Low Energy (BLE) advertising and scanning on couriers’ smartphones under couriers’ consents (See Section 7 for
ethics and privacy protection).

Admittedly, although utilizing encounter information for localization is not new, existing solutions [10, 27, 36,
46, 74] are not applicable due to the following practical challenges in on-demand delivery. (i) Lack of odometry
information. Most solutions rely on IMU-based dead reckoning to measure the relative distance to anchor
infrastructure. However, IMU data on couriers’ phones might be difficult to use due to accuracy (calibration lacking
for 672 smartphone models of 52 brands used) and privacy (gait may leak identity information [2, 40]) issues. (ii)
Limited anchor information. Even for encounter-based solutions, a certain amount of anchor infrastructure
or semantic anchors with known locations are needed to provide initial location information. However, utilizing
infrastructures limits the scale-up ability of the solution. Couriers’ reporting events at merchants are used
as semantic anchors in TransLoc [79], but the reporting event is sparse (two per delivery order), limiting the
performance.
To tackle the challenges, we design, prototype, and evaluate P2-Loc, a localization system based on peer to

peer encounters that only use couriers’ accounting data and encounter data to infer their relative locations.
Specifically, we build a graph neural network (GNN) [73, 83] and utilize the idea of link prediction [21] to infer
the couriers’ relative locations (i.e., travel time) to all the indoor merchants from sparse reporting events and
massive encounter events. In doing so, we build on recent progress in graph-based deep learning to solve the
domain-specific problem in a data-driven fashion. Particularly, historical encounter and travel time data are used
as labels hence no additional efforts are needed to collect labels. The contributions of this work are three-fold.
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• To the best of our knowledge, we are the first to use encounters to build, prototype, deploy, and evaluate a
relative, infrastructure-free indoor localization system in a real-world application, i.e., on-demand delivery. Based
on the ubiquitous encounter events and couriers’ indoor mobility preference, we infer the couriers’ real-time
locations without extra infrastructure costs, making our solution scalable for a large-scale commercial setting.
We also show that the idea of utilizing encounter information for relative localization can be generalized to other
problems. We share the source code [15] and one month of the data we collected in P2-Loc [4] for the research
community to validate our results and conduct further research.
• We build a GNN model to aggregate the information in couriers’ encounters and infer their real-time locations.
To tackle the odometry lacking, we build a graph to implicitly learn the topology of indoor merchants from
couriers’ historical indoor travel data; to tackle the anchor information lacking, we use GNN to integrate node
information and topological structure of the graph and use link prediction to predict couriers’ travel time to all
the merchants. Unlike GNNs in recommendation systems where the graph is static with binary edge features,
the graph in P2-Loc is temporally correlated with multiple features on heterogeneous edges. We design an
embedding network to embed the edge information to the same space with nodes and a recurrent module to
utilize short-term memory.
•We prototype and implement P2-Loc on a commercial on-demand delivery platform, and evaluate P2-Loc in
a mall with 4,075 couriers and 79 merchants for a month. The results show that P2-Loc outperforms methods
based on Wi-Fi, GPS and reporting by 9%, 19%, and 51%, respectively, and outperforms other encounter-based
methods (i.e., MDS-based and statistical) by 8%and 31%. As a concrete application of P2-Loc, we show that the
same delivery order scheduling algorithm with better localization results from P2-Loc can reduce the platform’s
overdue rate to save $ 40,000 every day via an offline analysis on real-world data. The evaluation and application
results lead to some key lessons learned on the trade-off between the performance and model complexity.

2 MOTIVATION

2.1 ETA for Relative Localization
Unlike applications that need targets’ absolute locations on a predefined map, on-demand delivery only needs
targets’ relative locations to the indoor merchants, hence offering a design opportunity for a map-free localization
system. Relative localization works for couriers’ indoor localization because it can support multiple upper-layer
applications. For example, Yang et al. [79] shows relative localization can be used to reduce indoor walking time
in order dispatching.
To obtain the relative locations, we need to infer the distance between locations, which can be measured by

travel time (i.e., an estimated time of arrival (ETA) problem). Compared to the existing work [57, 86] of estimating
the end-to-end delivery time that mainly depends on the couriers’ road travel time, our problem is focused on
more granular time in the indoor environment, which depends on the “unobservable” indoor environment setting.

2.2 Encounters among Couriers
The value of the couriers’ encounters is two-fold: (i) couriers indoor mobility is patterned, so the encounters
contain spatial-temporal information. For example, when two couriers encounter, we can use the time between a
courier reporting “Departure” at a merchant and the encounter time as the travel time between the merchant and
the encounter location because couriers usually take the shortest paths and there are no detours in between [79].
(ii) the encounters are dense; hence subsequent encounters have spatial-temporal connections. In an in-field
experiment, we found that 79 couriers move around 37 merchants in a mall in rush hour (11 am), and more than
2,000 times of encounters are recorded, which introduces much more spatial-temporal information compared to
reporting events only (around 200 reporting events). An illustrative example of the encounter event between two
couriers is shown in Fig. 1.
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Courier 2’s Spatial Trace

Merchant
Encounter Location Courier 1’s S-T Trace

Courier 2’s S-T Trace

Time

Courier Report Time  11:30:19

S-T Encounter Event

Indoor/Outdoor Time  11:30:38
Indoor/Outdoor Time  11:30:45

Courier Report Time  11:30:08

Encounter Time  11:30:23

B1

1F

2F

55 KM
Shanghai, ChinaCourier

Distance

Mall 

Fig. 1. Illustration of Two Courier’s Encounter. (1) Two couriers encountered on their way out of the mall after picking the
order on the B1 floor. The couriers’ relative locations to the two merchants can be measured as the travel time between their
departure and the encounter based on the shortest-path observation. (2) The right map shows all the 116 malls in Shanghai.
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Fig. 2. Problem Setting
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Fig. 3. System Overview

3 DESIGN

3.1 Problem Definition
The setting of the problem is shown in Fig. 2. In a time-varying graph, the input includes the real-time encounter
events between couriers (double red line between courier 𝐶1 and 𝐶2), and the travel time between couriers and
merchants (solid black line between 𝐶1-𝑀1 and 𝐶2-𝑀3). The output is the couriers’ real-time relative locations
indicated by the travel time between the couriers and merchants (dashed black line between courier 𝐶1,𝐶2, and
merchants𝑀1, 𝑀2, 𝑀3).

3.2 Overview
Fig. 3 shows the P2-Loc design with two modules.
Encounter Detection (Section 3.3). In this module, we detect the couriers’ encounter events by (1) developing
a BLE advertising and scanning module on couriers’ smartphones; (2) mining the BLE data to extract encounter
events. This mechanism is simple but robust given the real-world constraints, including privacy and security
concerns (for both the platform and couriers), hardware compatibility (for both iOS and Android), robustness
(fault-tolerant), and non-intrusive working manner (energy and data efficiency).
Deep-Learning-Based Localization (Section 3.4). We build a heterogeneous graph and conduct deep learning
on the graph using courier-merchant embedding and merchant embedding to transform the heterogeneous nodes
and edges into a unified space. The idea of link prediction in the recommendation system is used to predict
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Table 1. Encounter Data

Field Value
Courier 1/2 ID C001/C002
Enc. Start Time 7/1/20 12:11:00
Enc. End Time 7/1/20 12:11:20

Min./Max. RSSI -90dB /-70dB
Var./Avg. RSSI 5.2 / -85dB

Table 2. Accounting Data

Field Value
Order/Mer. ID O001/M001
Accepting 7/1/20 12:00:00
Arrival 7/1/20 12:10:00

Departure 7/1/20 12:10:10
Delivery 7/1/20 12:25:00 Courier

Server

(1) BLE Broadcasting 
and Scanning

(2) Uploading 
Scanned 

Data       

(3) Encounter Event Extraction

Courier
Fig. 4. Encounter Detection

the unknown travel time between couriers and merchants based on some known travel time and encounter
information. Note that the model is dynamic based on periodically training with recent data.
Data. As indicated in Fig. 3, three data-sets are collected to build the graph, encounter data, accounting data, and
context data. In encounter data (Table 1), we calculate the statistics of the encounter events extracted from
encounter detection. The accounting data (Table 2) logs the time and locations of four primary states of each
order, i.e., accepting an order, arrival at the merchant, departure from the merchant (with the order), and final
delivery to the customer. The state data are from couriers’ manual reporting on their APPs. The accounting data
are significant to the platform because they (1) are used for the platform’s new order scheduling; and (2) are shown
to customers in real-time to improve customers’ experiences. The context data record some environmental
information such as weather, date, and time.

3.3 Encounter Detection
Encounter detection, or proximity detection, has been studied using Wi-Fi [36, 54] and acoustic signals [42,
58]. These solutions, however, are not applicable in our setting. Wi-Fi is not applicable due to the scanning
unavailability to non-iOS APPs in off-the-shelf iOS devices [5]. Acoustic is not applicable because of couriers’
frequent use of microphones (to contact merchants and customers).
BLE Advertising and Scanning. We use the iBeacon protocol [32, 37] for BLE advertising and scanning, which
is a connection-less protocol that does not need a pairing process. There are three parameters in the advertising ID
tuples, a 16-byte UUID, a 2-byte Major, and a 2-byte Minor. As shown in Fig. 4, the mechanism is as follows: (0)
ask for couriers’ consents that we can use their smartphones for encounter detection; (1) the consented couriers’
smartphones conduct continuous BLE advertising and scanning at the same time in their working hours; (2) the
couriers’ smartphones upload the received ID tuples to a server in real-time by Internet connection (e.g., 4G);
(3) the server extracts the encounter events from uploaded data.

The technical details in implementing the system are discussed in Section 4. A straightforward mechanism is
used for advertising and scanning because (1) no additional configuration is needed after the couriers’ initial
consent, i.e., P2-Loc is transparent and non-intrusive to couriers; (2) APIs provided by Android [24] and iOS [6]
are used to guarantee the compatibility of P2-Loc, which leaves little design space for setting parameters such as
transmission power and advertising cycle.
3.4 Deep-Learning-Based Localization

Motivation and Challenges of Using GNN. GNNs have made great success in graph learning tasks such as
node presentation and link prediction. The strength of GNNs is in the ability to learn the structure information
of graphs. It provides great potential to solve our problem because the links between couriers’ locations and
merchants’ locations are unknown and different links are also strongly related. However, building P2-Loc based
on GNNs has three challenges:
(i) the graph is heterogeneous (i.e., two types of nodes and edges, each with different features);
(ii) the graph is time-vary and temporally correlated because the edges are changing when couriers move around;
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(iii) courier-courier encounter edges have multiple features such as encounter duration and RSSI statistics.

C. M. C. M.
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Fig. 5. Input and Output

To address the challenges, we present a novel GNN framework with graph embedding to model heterogeneous
nodes and edges, and a recurrent module to consider temporal correlations.
Notations. As shown in Fig. 5, let 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑛𝑐 } and𝑀 = {𝑚1,𝑚2, ...,𝑚𝑛𝑚 } be the sets of couriers and mer-
chants respectively, where 𝑛𝑐 is the number of couriers, and 𝑛𝑚 is the number of merchants. 𝐸 = {𝑒1,2, ..., 𝑒𝑛𝑐 ,𝑛𝑐−1}
is the set of courier-courier encounter event edges, and the data is collected from couriers’ encounters. 𝑅 =

{𝑟1,2, ..., 𝑟𝑛𝑐 ,𝑛𝑚 } is the set of courier-merchant travel time edges, and the data is collected from courier’ reports and
encounters when they travel from the merchants to the encounter locations, or from the encounter locations to
the merchants; 𝐷 = {𝑑1,2, ..., 𝑑𝑛𝑚,𝑛𝑚−1} is the set of merchant-merchant travel time edges, and the data is collected
from couriers’ reports when they travel among merchants.
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Fig. 6. Deep-Learning-Based Localization Framework
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Framework Overview. The architecture of the proposed model is shown in Fig. 6. The model consists of four
components: a recurrent courier graph embedding network, a merchant graph embedding network, a context
embedding network, and a fully connected network. The input is a heterogeneous graph composed of three
sub-graphs, i.e., an incomplete courier-merchant travel time graph, a courier-courier encounter graph, and a
merchant-merchant travel time graph. We list all the node features and edge features in Table 3. The output
graph is a complete courier-merchant travel time graph. Note that both the input and the output are time-based
sequential data. In offline training, we use a time step 𝑡 (e.g., 10s) to split the input data; in online predicting, we
conduct the prediction at each time step.

Table 3. Features Used in Learning

Feature 
Category

Feature
Name

Sample
Value

Feature 
Category

Feature
Name

Sample
Value

Node Feature
(Courier, C.)

Working Experience 2 years Edge Feature
(C.-C. Encounter)

Encounter Start Time 2020/07/01 12:00:00

# of Picking Up Orders 2 Encounter End Time 2020/07/01 12:00:15

Node Feature
(Merchant, M.)

Merchant Floor 1F Encounter Duration 15 seconds

Merchant Number 1F-23 Max. & Min. RSSI -70 dB & -90 dB 

Merchant Type Fast food Avg. RSSI -83 dB

# of Preparing Orders 4 RSSI Variance 5.2 dB

Edge Feature (C.-M.) Travel Time 12 seconds Context Feature Weather Rainy

Edge Feature (M.-M.) Travel Time 15 seconds Rush Hour Yes

Recurrent Courier Graph Embedding. The recurrent courier graph embedding aims to learn the latent factors
and the temporal connection of couriers’ relative locations. The challenge is how to combine the partial courier-
merchant graph and courier-courier graph inherently. To address the challenge, we (1) conduct courier-merchant
embedding with Merchant Aggregation for couriers to incorporate the travel time between the encounter location
and merchant; (2) conduct encounter embedding with Encounter Aggregation for couriers to incorporate encounter
information. Note that the output courier-courier embedding of the last time step is used as a recurrent input of
the encounter aggregation to incorporate temporal connections.
In merchant aggregation, for a courier node 𝑐𝑖 , we apply an aggregation function 𝜃𝑅 to its neighbors in the

courier-merchants subgraph to generate the aggregated node feature h𝑅𝑖 . A merchants node is the neighbour of a
courier node if it is the couriers’ last-departed or next-arrived merchant, because they are on the short path to
the courier’s encounter location, and the travel time is known. Formally, we denote it as the following function:

h𝑅𝑖 = 𝜎
(
W · 𝜃𝑅 ({x𝑖, 𝑗 ,∀𝑟𝑖, 𝑗 ∈ 𝑅}) + b

)
(1)

where 𝑟𝑖, 𝑗 is an edge from courier 𝑐𝑖 to a neighbour merchant𝑚 𝑗 , x𝑖, 𝑗 is a representation vector to denote the
courier-merchant edge 𝑟𝑖, 𝑗 . x𝑖, 𝑗 is formulated as the concatenation of courier-merchant edge features (i.e., travel
time) and merchant node embedding (after aggregation with its neighbors’ information in the merchant-merchant
graph); 𝜃𝑅 is the merchant aggregation function, and 𝜎 denotes the non-linear activation function (i.e., a rectified
linear unit). W and b are the weight and bias. One popular aggregation function for 𝜃𝑅 is the mean operator
where we take the element-wise mean of the vectors in {x𝑖, 𝑗 ,∀𝑟𝑖, 𝑗 ∈ 𝑅}. This mean-based aggregator assigns
equal weight to the couriers encountered, and we adopt a one-layer weighted mean-based aggregator in our
implementation of 𝜃𝑅 [38].

h𝑅𝑖 = 𝜎
©«W ·


∑︁
𝑟𝑖,𝑗 ∈𝑅

𝛼𝑖, 𝑗x𝑖, 𝑗

 + bª®¬ (2)

where 𝛼𝑖, 𝑗 is the weight of the encounter 𝑒𝑖, 𝑗 , which can be an equal weight 1
|𝐸 | or an attention-based weight.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 1, Article 9. Publication date: March 2022.



9:8 • Ding et al.

After the merchant aggregation, the courier-merchant embedding pipeline is used for concatenating merchant
aggregation vector (h𝑅𝑖 ) and courier features (C. in Table 3)) and feeding them into encounter aggregation and
encounter embedding.
In the encounter aggregation, for a courier node 𝑐𝑖 , we apply an aggregation function 𝜃𝐸 to its neighbors in

the courier-courier subgraph to generate the aggregated node feature h𝐸𝑖 . Formally,

h𝐸𝑖 = 𝜎
(
W · 𝜃𝐸 ({y𝑖, 𝑗 ,∀𝑒𝑖, 𝑗 ∈ 𝐸}) + b

)
(3)

where 𝑒𝑖, 𝑗 is an edge (i.e., an encounter event) between courier 𝑐𝑖 and 𝑐 𝑗 , y𝑖, 𝑗 is a representation vector to denote
the courier-courier edge 𝑒𝑖, 𝑗 . y𝑖, 𝑗 is formulated as the concatenation of the merchant aggregation vector (h𝑅𝑖 ),
courier-courier encounter information vector (C.-C. Encounter in Table 3), couriers attribute features vector (C.
in Table 3), and the encounter embedding results from the last timestamp together as the input of the courier’s
embedded vector in the encounter aggregation.

After the encounter aggregation, we concatenate the output of courier-merchant embedding and the output of
encounter aggregation (h𝐸𝑖 ) as the final output of the recurrent counter embedding.
Merchant Graph Embedding. The merchant graph embedding is used to learn the latent relationshop between
the merchants (e.g., topology and relative locations) in a transformed spatial-temporal space. There are two steps:
aggregation and merchant embedding.

In the aggregation, we generate the aggregated node feature for eachmerchant node by applying the aggregation
to its neighbors in the merchant-merchant graph. Two merchants nodes are neighbors if a courier has traveled
from one merchant to the other. The input includes two parts: merchants’ feature set and merchant-merchant
feature set. Merchants’ feature set contains merchant-related features, such as the merchant floor, the merchant
number, the merchant type, and the number of preparing orders, as shown in Table 3. Specifically, we feed sparse
features of merchants to an embedding layer (the same as entity embedding, a simple lookup table). Then we
concatenate the embedded sparse feature and dense features of merchants together as merchants’ vector. The
merchant-merchant feature set contains the travel time between merchants collected from couriers’ historical
travel time between merchants.
In the merchant embedding, we concatenate the output of the aggregation and the merchant feature (M in

Table 3) as the output of the recurrent counter embedding.
Context Embedding. Context embedding takes context information such as weather and time information
as the input. Specifically, as the preprocessing of merchants features in merchant embedding, the context’s
representation is learned based on the entity embedding [28]. Then we fuse the entity embedding results of
categorical features and the numerical features using concatenation operation.
Link Prediction. In the prediction part, the input is an arbitrary courier-merchant pair instance, and the
output is the travel time between the courier-merchant pair. For a courier-merchant pair instance, we feed the
concatenation of the courier embedding vector, the merchant embedding vector, and the context embedding
vector to the fully-connect network. Then we get the regression result that stands for the travel time between the
courier and merchant. We use ReLU as the activation function in the whole network architecture.
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Fig. 7. Training Illustration
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Model Training. We adopt a common objective function

Loss = 1
|𝑂 |

∑︁
𝑟𝑖,𝑗 ∈𝑂

(𝑟 ′𝑖, 𝑗 − 𝑟𝑖, 𝑗 )2 (4)

where 𝑂 is a set of edges between couriers and merchants, 𝑟 ′𝑖, 𝑗 and 𝑟𝑖, 𝑗 are the predicted and labeled travel time
between the couriers’ encounter locations and merchants. A part (usually 20%) of the collected courier-merchant
travel time data is used as labels, which is a common practice in the link prediction. Note that the labeled travel
time is collected from couriers’ manual reports when they arrive or leave the merchants (Table. 2). Therefore, no
additional infrastructures are needed for collecting the label. We use a small example with two couriers and four
merchants to show the process in Fig. 7. When two couriers encounter on their ways among merchants, there
are four courier-merchants edges and one courier-courier edge, and the corresponding data can be collected. In
the training process, 𝑟1,2 and 𝑟2,4 can be used as labels since they are the travel time we want to predict (i.e., 𝑟𝑖, 𝑗 in
(4)). Although couriers’ reports only provide spares anchor information (i.e., two reports per order), we show
that one-month data are enough to train the model with impressive performance. Admittedly, couriers’ reports
may have inaccurate data due to couriers’ early or late reports, we use the Bluetooth beacons deployed in the
mall to verify that couriers’ reports work well as travel time labels.
Dynamic Environment. P2-Loc is supposed to work in a dynamic environment where merchants’ shops
may open and close and couriers may come and leave. For the merchants’ dynamics, since the model relies on
the merchant-merchant graph embedding to learn the topology and relative locations of merchants in a mall,
the merchants’ information needs to be known in advance. Therefore, data need to be collected to train the
model for new malls. The evaluation shows that one-month data are enough to train a satisfactory model that
outperforms the baselines, which is marginal compared to the lifetime of a mall. The model also needs to be
re-trained periodically to incorporate the new merchants and the floor plan changes (e.g., new elevators). For
the couriers’ dynamics, the courier’s information does NOT need to be known in advance because the inherent
information learned in the courier-courier graph and the courier-merchant graph is the relative distance between
the merchants’ locations and the encountered locations. When new couriers come, the prediction can be directly
conducted as long as there are encounter events between the new courier and other couriers (i.e., the new courier
is linked to the graphs).
Travel Time Asymmetry. In our design, we use travel time as a metric to measure the distance between a
courier and a merchant, but in some extreme cases, the travel time between two locations is asymmetrical. For
example, there might be a queue waiting for the upward elevator when the mall opens around 9 am, while the
downward elevator is empty, which will lead to asymmetrical travel time between merchants on the ground floor
and higher floors. In our graph embedding, we consider the asymmetry implicitly by assigning a direction for
each edge.

0 1
0

1 B1
2F

Fig. 8. Embedding Visualization

Model Interpretation. To better understand the model, we visualize the merchant embedding. Fig. 8 shows
the projection of the embedding in a 2-D plane. The embedding learns both the floor information and distance
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information. The merchants on the same floor are nearby and the distance in the embedding is consistent with
the travel time in between.

4 IMPLEMENTATION
The P2-Loc system was designed and implemented in the real world as a core component in the [anonymous]
platform, a large-scale on-demand delivery company in China. In the section, we introduce some practical issues
rarely discussed or studied in a controlled environment.

4.1 Pilot Study and Real-World Deployment

In-Lab Pilot Study. We first conduct a feasibility study in the lab environment. We use five Android phones in
the test and emulate the encounter events at five distances, i.e., 5m, 15m, 20m, 25m, 50m. We found that when
the APP is active (either in the foreground or background), the advertising signal is stable within 15m with 90%
encounter events captured, but degrades dramatically beyond 25m.
Large-Scale Real-World Deployment. After the in-lab study, we embedded the P2-Loc into the couriers’ APP
in the [anonymous] platform. We developed two individual software development kits (SDK) for BLE advertising
and scanning in the APP. We set some primary configurations of the P2-Loc SDK as parameters for further
developing, e.g., scanning duration and intervals, and data upload cycles. Note that the SDK and the back-end
server developing were also the primary works in the implementation, but we omit them in this paper because
they are standard.
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Real-World Encounter Facts. The P2-Loc was embedded in the couriers’ APP in June 2020, serving 4,008
couriers and 10,520 merchants. We use the data collected around a normal mall area to illustrate the statistics
of the implementation. The average number of active couriers and merchants in different hours is shown in
Fig. 9, where we found that the number of couriers is twice of the number of merchants during the day. The
average numbers of courier-courier encounters and courier-merchant interactions (i.e., picking up orders) are
shown in Fig. 10, where we found that the number of courier-courier encounters is ten times of the number of
courier-merchant interactions during all the day. 87% of encounter events last less than 10 seconds (Fig. 11), and
almost all the encounter events (99%) last less than 55 seconds.

The courier-courier encounter and courier-merchant graph in the rush hour (11 am) in a single day are shown
in Fig. 12. Red circles stand for couriers, and blue squares stand for merchants. Red lines are encounter events
between couriers, and green lines are known travel time between couriers and merchants. In the rush hour,
79 couriers move around 37 merchants, making 389 courier-merchants interactions and 2,534 courier-courier
encounter events. Intuitively, the encounter density impacts the localization performance, and we will show its
impact in Sec. 5 (Fig. 22).
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4.2 Reliability of Encounter Detection
In the implementation, we found that not all encounter events can be detected by our encounter detection module,
hence we conducted some studies to find out the reasons. Specifically, we define

Encounter Detection Reliability =
# of Detected Encounters
# of Total Encounters (5)

where the number of total encounters is estimated based on the BLE beacons we deployed at merchants (Fig. 17)
and in-field observation (we spent two days in the mall and record the encounters of couriers).

Fig. 12. Input Graph at 11 am
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Fig. 13. Duration Impact

Table 4. Device Impact

HUAWEI (44%) 33% 38% 43% 34% 53%

Xiaomi (23%) 64% 77% 79% 78% 76%

OPPO (17%) 78% 77% 86% 82% 76%

Vivo (16%) 70% 75% 64% 75% 64%

Broadcast
Device (shares)
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Impact of Encounter Duration. The encounter duration, calculated as the first and last BLE advertising
timestamp, has a significant impact on the encounter detection reliability. As shown in Fig. 13, it can be observed
that reliability is less than 80% when the encounter duration is less than 25s and is greater than 90% when the
encounter duration is longer than 50s.
Impact of Device Hardware. Because there are 52 brands and 672 phone models used by 300K daily active
couriers, the system must be compatible with most (if not all) devices. We illustrate the reliability between four
major brands as advertising and scanning device pairs in Table 4. Different devices show significant differences
as advertising devices. For example, HUAWEI shows inefficiencies compared with other brands when advertising,
possibly due to hardware or software differences.We show that P2-Locworks robustly given undetected encounter
events (Fig. 21).

4.3 Privacy in BLE Advertising

Potential PrivacyWeakness. In the iBeacon protocol [32] we used, an ID tuple is fixed for each device, and the
advertising is in cleartext. It leads to courier privacy and platform security issues under potential attacks [30, 34, 56]:
(1) an adversary can replicate some courier ID tuples and advertise them in some other locations, which can
lead to wrong encounter detection and problematic order assignment; (2) an adversary can deploy some devices
to eavesdrop on the couriers’ ID tuples and record their advertising locations as “side information” through
war-driving [68]. The side information is used to attack an anonymous open data-set (e.g., anonymous online
reviews or leaked data from the platform) to re-identify certain couriers [12].
Privacy Protection Mechanism. To address the potential privacy problems, we augment our advertising with
the SM3 algorithm, i.e., a public Time-based One-Time Password (TOTP) [72] algorithm to encrypt the ID tuples,
similar to Google Authenticator. Specifically, the server assigns a seed ID to a courier’s phone when he logs in to
the platform using the smartphone for the first time. For every duration of 𝐾 , the server conducts the following
three steps: (1) calculating an encrypted ID tuples for each smartphone based on its seed ID and current time;
(2) updating the mapping of the courier’s identity and its newly encrypted ID tuples; (3) sending the encrypted
ID tuples to the smartphone for advertising in the following duration 𝐾 .
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Fig. 14. Privacy Risk

Analysis Results. We evaluate the performance of our location privacy protection with offline analysis on
real-world Bluetooth and trajectory data. In the attacking model, a group of adversary devices is randomly
deployed at known locations to eavesdrop on couriers’ advertising messages to collect side information. The
side information is used to attack a supposedly-leaked anonymous data-set with all couriers’ traces. In the
experiments, we assume adversary devices were deployed in a group of merchants with known locations, then we
find the couriers around the merchants as the eavesdropped couriers based on couriers’ trajectory. We use 78.1K
couriers’ trajectory data in one day in Shanghai with anonymous ID as the supposedly-leaked data, and compare
it with the couriers’ location we eavesdropped around the merchants in a brute-force way. Based on the [12], four
spatial-temporal points are enough to identify most individuals. In Fig. 14, we show that the re-identification
ratio increases as the adversary utilizes more eavesdropping devices. The re-identification ratio is defined as
how many couriers we can identify successfully among all couriers. When we set the ID update cycle as one
day (default setting), we found that the possibility of a courier getting re-identified is less than 0.03% even 80k
eavesdropping devices are deployed. The risk ratio is still below 0.04% when we use four days as ID update cycles.
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4.4 Other Real-World Issues

BLE Advertising - Scanning Interference and BLE - Wi-Fi Interference. One potential problem in imple-
menting P2-Loc is that there might be conflicts between BLE advertising and scanning. We test the interference
by comparing the number of BLE advertising messages scanned when the BLE advertising is on and off. The data
indicates that the advertising and scanning module does not conflict because the number of BLE messages scanned
per minute does not change much when the advertising is on and off (Fig. 15). We also test the interference
between BLE and Wi-Fi by comparing the number of Wi-Fi data scanned when BLE advertising is on and off, and
no interference is observed (Fig. 16).
APP and Service Lifetime.We also find a key factor that impacts the encounter detection performance (and
possibility all the APP-level mobile computing applications) is that the operating system may kill the BLE
advertising service due to resource or energy reasons. In most cases, multiples SDKs are packaged in an APP, and
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Fig. 17. The three-floor mall in the evaluation. The goal is to infer couriers’ relative locations to all the merchants (Fig.(a)).
Wi-Fi APs with known locations are used in the Wi-Fi-based baseline (Fig.(b)). Ground truth is collected via BLE beacons
deployed at some merchants (Fig.(c)).

each is operating different tasks. Android [26] suggests that consistent tasks without user intervention should be
implemented using “service”, so our SDK registers a service whenever the APP initiates. However, the registered
service might be killed by the OS without notification; hence the SDK is unaware when the BLE advertising or
scanning fails. One solution is to re-start the service periodically to avoid unknown failures, which is simple but
cannot adapt to different cases. We implement an adaptive strategy that dynamically re-start the service according
to the courier’s status (indoor/outdoor, order status, etc.). We omit the details here due to space limitations.
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Fig. 18. Energy Consumption

Energy Consumption. In a small-scale test, we asked 62 couriers’ permission for their smartphone battery
information to analyze the impact of P2-Loc on smartphone energy consumption. We collected the battery level
data from the Android API [25] and removed the corresponding data if the phone is charging. Then we grouped
the data by P2-Loc states (on/off) and brands and calculated the battery drain per hour. The median battery drain
per hour is 2.72% when P2-Loc is off and 2.75% when P2-Loc is on. The absolute additional energy consumption
is 0.03% per hour, and the relative additional energy consumption is 1%. The boxplots of battery drain per hour
of all smartphones and some brands are shown in Fig. 18. The results show that different smartphones show
different energy consumption, but the additional energy consumption of P2-Loc is marginal.

5 EVALUATION

5.1 Methodology

Settings.We conducted a thorough evaluation of P2-Loc in a mall area in Shanghai in Fig. 17 for one month
(June 2020). There are 294 active couriers, 51 active merchants, and 2427 delivery orders each day. We deploy
some BLE beacon devices in the merchants to get ground truth.
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Metrics. In P2-Loc, we achieve indoor relative localization from the couriers to the merchants. To evaluate the
relative location inferred by P2-Loc, we compare the estimated travel time between the encounter location and a
merchant with the ground truth that the courier visited after. We define an absolute time error (ATE) as follows

ATE = |𝑡𝑖 − 𝑡𝑖 | (6)

where |𝑡𝑖 | and 𝑡𝑖 are predicted travel time and the ground truth respectively.
Ground Truth. Although the training labels can be collected from couriers’ reports, a question remains that
whether the collected labels work well in a real-world application given potential inaccuracies due to couriers’
early or late reports. Therefore, we use the BLE beacons deployed at the merchants to get the ground truth for
the couriers’ travel time among merchants. We obtained 34 merchants’ consents to deploy BLE beacon devices,
and each beacon device is bound to one merchant, as shown in Fig. 17. We follow the idea in [61] to find the
accurate time of couriers’ arrival and departure at each merchant; hence we know the ground truth travel time
from the encounter location to the merchants. The training process is infrastructure-free since only couriers’
report is used, and we use the ground truth data in the testing phase not only to evaluate the model but also the
effectiveness of couriers’ report as labels. Since we have verified the effectiveness of couriers’ reports as labels in
the work, no hardware or infrastructure when we apply P2-Loc in real-world applications.
Baselines. We choose the following baselines and group them into two categories: anchors baselines and model
baselines. We use anchors baselines including Wi-Fi, GPS, TransLoc, and P2-Loc- to show the effectiveness of
utilizing encounters as additional information. We use model baselines including MDS and Statistical methods
to show the effectiveness of GNN. We do not include the methods that required sophisticated devices or extra
fingerprinting effort, considering their practical constraints in large-scale deployment.
•Wi-Fi-based Methods (WiFi). To show P2-Loc’s superiority compared to state-of-art Wi-Fi-based methods, we
embedded a Wi-Fi scanning module in some couriers’ Android phones APP under their consent. The module
periodically scans the Wi-Fi signals around and returns the Wi-Fi list with a timestamp. The scanning cycle is set
as one minute, but the scanning would be throttled when the APP runs in the background [13]. We follow the
idea in [35], where we use the order of Wi-Fi RSSI values to find the courier’s location and calculate the 𝑡𝑖 of
Wi-Fi based on the couriers’ historical travel time. We conducted a wardriving process and collected the location
of 18 Wi-Fi APs (Fig. 17).
• GPS-based Methods (GPS). To show P2-Loc’s superiority compared to state-of-practice methods. We utilize
received GPS signals to localize couriers. The 𝑡𝑖 of GPS is calculated using the distance between the courier and
the merchant, and the average speed variable depends on the area and time.
• Report-based Methods (TransLoc). To show the advantages of combining encounter data and accounting data
with using accounting data only, we implement TransLoc [79] where they build a symbolic graph from couriers’
report data to predict the courier’s arrival time at the indoor shops.
• No-Encounter (P2-Loc-). To show the effect of encounter information, we implement a deep learning model
without encounter data. That is, we only use the courier-merchant distance and the merchant-merchant distance
to build the graph in Fig. 5 and Fig. 6.
• Encounter-based Localization Methods (Enc-MDS, Enc-Stat.) To show the effectiveness of using GNN in encounter-
based localization, we consider two encounter-based works using multidimensional scaling (MDS) [64] and
statistical method [65]. The statistical method (Enc-Stat.) is a hybrid solution where Wi-Fi is used for localization
and Bluetooth is used for encounter detection.
Hardware and Parameter Settings. The detailed parameter settings for GNN are provided in Table 5. The
parameter settings are based on the tradeoff of couriers’ indoor mobility, order batching and scheduling cycle,
and computation cost. The following hardware and software configurations are used in the evaluation: CentOS,
NVIDIA GeForce RTX 2080 Ti, and 78G memory.
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Table 5. Parameter Settings.

Hyper-parameter Setting Hyper-parameter Setting
GNN hidden dims. 64 Batch size 512
Embedding dims. 3 Learning rate 0.001

FC network hidden dims. 64 Optimizer ‘RMSprop’
Predict time step 10 seconds Activation ‘Relu’
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Performance Compared with Different Types of Anchor Information. Fig. 19 shows the performance
of P2-Loc compared with anchor baselines, where P2-Loc performs better than all the baselines consistently.
Quantitatively, the mean absolute error (MAE) in seconds are 29.39s for P2-Loc, 32.41s for Wi-Fi, 39.65s for
P2-Loc-, 36.13s for GPS, and 60.40s for TransLoc. It shows that P2-Loc improves methods based on Wi-Fi, GPS
and reporting methods by 9%, 19%, and 51%, respectively, bearing out the advantage of utilizing encounter
information compared to other anchor-only solutions. The improvement compared to P2-Loc- (26%) also verifies
the value of encounters in a deep-learning-based method.
Performance Compared with Different Models. Fig. 20 shows the performance of P2-Loc compared with
model baselines, where the MAE are 32.04s for Enc-MDS, and 42.61s for Enc-Stat. The improvement introduced
by P2-Loc is 8% for Enc-MDS, and 31% for Enc-Stat, bearing out the advantage of using GNN.
Performance versus Cost Tradeoff Analysis. We analyze performance (i.e., accuracy) versus cost based
on different system design choices: (i) exploring both new hardware and new software (i.e., aBeacon [16]); (ii)
new software only (i.e., our P2-Loc); (iii) neither new hardware nor new software (i.e., TransLoc [79]). Here
the hardware and software are additionally deployed or developed instead of existing components such as
smartphones or the delivery APP. We argue P2-Loc can achieve better accuracy and cost tradeoff compared to
other design choices. Compared to aBeacon with 80% accuracy on average [16], P2-Loc can achieve the same
accuracy if we consider 46 seconds as the threshold (shown as in Fig. 19), but much less costly than aBeacon (i.e.,
$10 for hardware only for each shop excluding installation). Even we set the threshold to be 30 seconds (i.e., the
pooling time for order dispatching), the accuracy is 74% with a limited decrease compared to aBeacon. Compared
to TransLoc with the lowest cost, P2-Loc doubles the accuracy on average (shown as in Fig. 19) but only has a
nearly neglectable cost of software development.
Robustness. Given the reliability issues in encounter detection (Section 4.2), we realize that not all encounter
events can be captured. We evaluate the robustness of P2-Loc by setting a part of encounters as “undetected”
(i.e., corresponding encounter data not used), and show the performance at different missing ratios in Fig. 21.
Note that the “undetected” encounter data are selected based on a uniform distribution to mimic the real-world
setting. Compared with real-world cases (around 25% missing in dashed box), the median ATE (brown bar in the
box) does not change much when more encounters are missing, but the mean ATE (green triangle) increases

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 1, Article 9. Publication date: March 2022.

P2Loc-



9:16 • Ding et al.

Fig. 21. Robustness
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Fig. 22. Encounter Density

when more than 50% of encounter events are NOT detected. This suggests the importance of a reliable encounter
detection mechanism. We envision that better localization performance can be achieved with higher encounter
detection recall brought by updated smartphone hardware and encounter detection modules.
Impact of Encounter Density. We also evaluate the impact of the density of couriers, merchants, and their
interactions by comparing the performance at different hours. The density 𝜌 is defined as the number of average
encounter events per courier per hour. Note that unlike the missing encounters in robustness evaluation, when
the density decreases, the number of encounter events, the number of couriers, merchants, and their interactions
also decreases. As shown in Fig. 22, MAE varies between 19.5s (𝜌 = 80) and 32.3s (𝜌 = 30) when density varies
between 20 and 90. A less apparent observation is that MAE decreases when the density increases, but the MAE
when 𝜌 = 30 and 70 deviates from this trend due to the limited evaluation scale (i.e., one mall). Note that the
overall density is around 40, where the MAE is around 27s.
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Impact of Merchant Density. The density of merchants in the mall also impacts the performance, because
the couriers’ reports at the merchants are used as anchor information. Therefore, the merchant density can also
be viewed as the anchor density in the evaluation. We do the evaluation by manually selecting certain ratio of
the merchants in the training and testing. As shown in Fig. 23, the x-axis is the ratio of merchants we used in
the evaluation, where 100% means all the merchants are used. It can be observed that the performance degrades
when there are fewer merchants in a mall. The degradation is limited when the density varies between 40% and
80%, but will drop significantly when the density decreased to 20%. Note that the mall in the evaluation has 51
merchants located in three floors where each floor cover an area of 8000 square meters.
Impact of Encounter Merchant Floor. Unlike other indoor localization problems, one challenge in our setting
is that couriers travel between indoor merchants on different floors. We evaluate the impact of cross-floor travel
by extracting the same-floor data (B1-B1) and the different-floor data (B1-2F). As shown in Fig. 24, the MAE for
the same floor and different floors are 21.26 seconds and 27.91 seconds, respectively. It indicates that cross-floor
localization is more challenging than same-floor localization, but we can still provide better performance than
Wi-Fi and GPS.
Feature Sensitivity Analysis. To evaluate the feature importance, we conduct a sensitivity analysis via the
leave-one-out method (i.e., training the model without a feature). The complete model (i.e., P2-Loc) with all

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 1, Article 9. Publication date: March 2022.



P2-Loc: A Person-2-Person Indoor Localization System in On-Demand Delivery • 9:17

w/o Avg. R
SSI

w/o C.-M
. T

rav
el T

ime

w/o M
ax. R

SSI

w/o M
in. R

SSI

w/o Var. 
RSSI

w/o Encounter 
Durati

on

w/o M
.-M

. T
rav

el T
ime

w/o Rush Hour

w/o M
erc

hant F
loor

w/o M
erc

hant T
ype

w/o M
erc

hant #

w/o # of P
rep

arin
g Orders

w/o W
eat

her

w/o # of P
ick

ing Up Orders

w/o W
orking Experie

nce
P2 Loc

0

10

A
TE

 (s
ec

on
ds

)

Fig. 25. Feature Sensitivity Analysis

features is used as the baseline. As shown in Fig. 25, edge features such as RSSI statistics, encounter duration,
C.-M. travel time, and M.-M. travel time contribute mostly. The contribution of context features and node features
is limited due to the limited evaluation environment (one mall) and time (one month). We envision these features
will make more contributions in a more extended time scope and extensive area.
Model Latency and Update, Scalability, Online Deployment, and Model Generalization. For the learning
model, the offline training takes 4 hours and the online prediction takes 5 seconds. Although the travel time
among shops does not vary much day by day, it varies slowly when couriers enter and leave a delivery team,
shops open and close in a mall, floorplan changes, and dispatching policy changes. Therefore, the models are
updated periodically (e.g., weekly) with new encounters and couriers’ report data. Although our work is based
on an offline experiment, the model can be directly deployed online given the cloud services (e.g., Tensorflow on
Google Cloud [9]). The scalability of the model can be achieved by parallel training and prediction in different
malls or districts. Note that because the graph model relies on the merchants’ locations and couriers’ mobility, it
is inappropriate to use an existing model on new malls and couriers. However, we have shown that one-month
data is enough to build a decent model, and one month is a short time compared with the alteration of merchants
and couriers.

6 APPLICATION
Among all the applications of couriers’ indoor localization (e.g., navigation for couriers, demonstration for
merchants and customers, order scheduling for the platform), we show P2-Loc’s performance in order scheduling
because the benefits can be directly measured by the monetary savings. We conduct an offline analysis on real-
world order and trajectory data to compare the scheduling performance based on P2-Loc GPS and Enc-MDS. It is
estimated that the improved couriers’ indoor locations can save $ 40,000 for the platform every day nationwide.
Order Scheduling Background. A widely used scheduling strategy is that when an order is placed, it is assigned
to a nearby courier with close destinations. As shown in Fig. 26, when an order is placed in merchant𝑚0, the
platform will check all the nearby couriers (i.e., 𝑐1, 𝑐2, and 𝑐3). 𝑐2 is the closest but 𝑐2’s destination 𝑑2 is in the
opposite direction. Both 𝑐1’s and 𝑐3’s destination (𝑑1 and 𝑑3) are close to the destination of the new order (𝑑0). 𝑐1
is closer to the merchant so the order will be assigned to 𝑐1. This scheduling relies on the estimated distance
between the merchants’ GPS and couriers’ GPS, which is inaccurate when indoor.
Analysis Settings. Because a badly dispatched order brings a terrible experience to both real couriers and
customers, it is very challenging to conduct online in-situ experiments. Therefore, we obtain some real-world
order scheduling data from the cooperating delivery platform, including the reporting timestamps (Table. 2),
promised delivery time (different for each order), actual delivery time (from customers’ feedback). The orders are
considered as GPS-based. We select two subsets of the orders as P2-Loc-based and Enc-MDS-based. Specifically,
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the orders that the same scheduling choice shall be made based on localization results provided by P2-Loc and
Enc-MDS-based method are considered as P2-Loc-based and Enc-MDS-based. We use the overdue ratio (i.e.,
number of overdue orders among all orders) as a metric because it can (1) measure the performance of order
scheduling, (2) measure the monetary benefit of P2-Loc because the platform needs to compensate customers for
each overdue order. The experiment is based on one month of orders in the mall area in Fig. 17, including 33,915
orders and 3,701 couriers.
Results. From Fig. 27 we observe that P2-Loc reduces the overdue ratio by 0.5% compared with state-of-practice
GPS method, and 0.3% compared with state-of-art encounter-based localization method. We think the reason
that the seconds of improvement in travel time estimation can improve the whole delivery process is that there
around 600 orders to be picked up by 100 riders nearby in the mall in the rush hour (11:00am 12:00pm), and the
scheduling strategy is highly relied on estimated travel time of different courier-merchant pairs [78]. Therefore,
even small improvement in travel time estimation will be amplified by the order scheduling process and impact
on all the orders. Although the overdue reduction brought by P2-Loc looks marginal (around 4‰), the total
volume is enormous (more than 10 million daily orders of a single platform), and our method is infrastructure-free.
Therefore it can be easily expanded nation-wide. Given that the platform covers $1 of the overdue penalty for
each overdue order, it is estimated that $40,000 can be saved for the platform every day based on P2-Loc.

7 DISCUSSION

Key Lesson Learned: Trade-off Between Performance and Model Complexity. The results (Fig. 19, 20)
suggest that the deep learning based approaches outperform naive GPS and simple mechanisms (i.e., MDS)
moderately, leading to a 7-second and 3-second performance gain, respectively. This leads to a set of important
lessons learned, especially for industry applications, that (1) a simple approach (e.g., GPS) could be adopted first
because it is easy and cheaper to deploy; (2) some advanced approaches (e.g., MDS) can improve the performance
given additional information that can be obtained with a low cost fashion as inputs (e.g., encounter data); (3) an
approach based on complex deep learning may further improve the performance with little performance gain
but requires massive training data with accurate labels (that might not be easy to collected at a large scale) and
fine-tuned parameters (that may fail when the environment changes). Thus, how to achieve a balanced tradeoff is
based on specific business requirements: when low-cost additional information (e.g., encounter data) is available,
some simple data-driven approaches can be used; when labeled data can be obtained at low cost and even a
moderate improvement is also important (in our case the localization service helps the platform schedule 10
million orders each day), some deep learning approaches could be considered to push the performance to the
limit.
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Other Lessons Learned. (1) The courier’s indoor encounter events offer a great opportunity to achieve relative
infrastructure-free indoor localization (Fig. 1). (2) Graph learning works well for the indoor localization problem
because the indoor topology and spatial-temporal connections between couriers andmerchants can be represented
and learned effectively and efficiently (Fig. 8). (3) We show that the system is non-intrusive, energy-efficient, and
privacy-preserving in the large-scale real-world implementation (Fig. 14, 15, 16, 18). (4) Although the reliability
of the BLE-based encounter detection is impacted by multiple factors (Fig. 13, 4), we show that P2-Loc is robust
(Fig. 21), and potential improvement is expected with hardware updating. (5) We show that P2-Loc outperforms
anchor-based methods (i.e., GPS, Wi-Fi, and TransLoc), and encounter-based methods without deep learning (Fig.
19, 20). We expect the improved couriers’ indoor locations can save $ 40,000 for the platform every day (Fig. 27).
Further Explanation on “Anchors”. “Anchor information” in this paper means location information from any
source, and it is indispensable in a localization system. While for existing “anchor-free” works, they either provide
“infrastructure-free” solutions [77] as in our paper or build a “target-relative” coordinate system where only
relative locations are needed [55], which does not work in on-demand delivery since we need to know couriers’
relative locations to the merchant shops, instead of to other couriers. In P2-Loc, we used couriers’ reports at
the merchants as semantic anchor information. Compared to infrastructures, the major drawback of couriers’
reports as semantic anchors is that the report is sparse because couriers only report twice (arrival/departure)
during the whole delivery process. Therefore, we explore the additional spatial-temporal information in couriers’
encounters for localization.
More Applications based on Encounters. Encounter-based indoor localization is our first application, and
more applications are envisioned based on encounter detection in on-demand delivery. For example, in the
current delivery scheme, an order is delivered by a single courier. This strategy is simple for scheduling and
accounting but may have lower efficiency, especially when multiple couriers are waiting at the same merchant or
traveling between similar routes. One potential improvement is that we check if we can swap their orders or put
all the orders to one courier and free another courier when two couriers encounter.
Generalization to other Applications. Although P2-Loc is designed and implemented in on-demand delivery,
we believe the system and the underlying ideas work in generic scenarios where relative locations are needed
based on a few known spatial-temporal points and some encounters. For example, warehouse robots [69] have
been envisioned for many years but are still not widely applied due to the high cost. One of the costly parts is the
onboard sensors for localization. We believe P2-Loc, with some modifications, is a potential solution to provide
an accurate yet low-cost localization service. Another potential application is vehicle-to-vehicle communication,
such as dedicated short-range communications (DSRC) [44]. We can infer all the vehicles’ locations given their
short-range communication and a few vehicles with known locations.
Limitations. (1) No Absolute Indoor Localization. In this work, we infer a courier’s relative distances to the indoor
merchants as the courier’s relative location. We argue that this “relative location” is enough for the on-demand
delivery because knowing the distance between the couriers and the merchants is enough for order scheduling
and time estimation. For some other applications, absolute locations are needed, so we usually need the floorplan
or the absolute location of the anchors (e.g., Wi-Fi AP, BLE Beacon, LED light) to acquire the absolute locations of
the target users. However, the floorplan is not always available for all the malls in a city. (2) Cross-Mall Application.
Since the merchant topology is learned in the merchant embedding, the model only works in the mall where the
labeled data are collected. Data collection and model training are needed when we want to apply the model in
a new mall. (3) Inaccurate Courier Report. It has been shown in [79] that couriers’ reports are prone to errors.
This paper adopts similar pre-processing as [79] on the report data to filter out errors. The results (Fig. 19) show
that solution solely relying on reporting data performs badly. However, integrating massive encounter data with
reporting data can significantly improve localization results (Fig. 19).
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Ethics, Privacy, and Data Release. All the data are collected under the explicit consent of the couriers. The
couriers were informed that their encounters would be logged for localization and order dispatching (The privacy
policy will be included in the Camera Ready version due to anonymity but similar to this one [20]). The couriers
and merchants ID are anonymous keys to join different data sets. As indicated in Table 3, we did not use personal
information, e.g., name, work ID, age, gender, to protect the couriers’ privacy. Hence IRB is exempted. We will
release one month of our data collected (Table 1, 2) for the research community to validate our results and conduct
further research. The release process will be similar as a previously-released data set from the “aBeacon” platform
[3] to guarantee privacy and usability.

8 RELATED WORKS

Relative Encounter-based Localization. Relative localization and encounter-based localization are closely
related, because relative localization usually relies on communication among neighboring targets. The related
works can be categorized into target-relative and anchor-relative.
• In target-relative works, the targets only need to decide their relative locations to other targets. Graph realization
methods (e.g., MDS) based on ranging are used to calculate the relative distance directly [49, 59], or correct the
dead reckoning results [64]. EASE [27] propose a distributed algorithm to infer distance among all nodes in the
setting that each node knows its own location and encounter information with other nodes. The idea of relative
localization is also adopted in the Internet system to assign coordinates to the hosts given the round trip time
[11]. Bluetooth and Wi-Fi data from smartphones are used in [44] to decide the relative locations of vehicles.
Spatial temporal phase information is used in [60] to decide the relative locations of RFID tags.
• In anchor-relative works, the targets need to decide their relative locations to some anchors with the help of
nearby targets. A hybrid solution is proposed in [1] to select some anchor nodes and use them to localize the
others. Encounter information from acoustic sensing is used in [10] to localize and navigate users in the indoor
environment with pre-placed beacons, and in [46] to refine Wi-Fi localization results. GPS errors are modeled
and eliminated in [29] based on the raw GPS data from nearby smartphones. Social-Loc [36] uses the encounter
information between smartphones to improve the Wi-Fi-based localization. CoSMiC [62] use the encounters
information from Wi-Fi to recover the trace of lost children. Encounter information from Bluetooth is used in
[65] to localize devices relative to Wi-Fi APs.

Compared with the existing relative encounter-based works, the contribution of our works is that we use graph
learning techniques to aggregate the heterogeneous spatial-temporal information from couriers’ encounters, and
build an infrastructure-free, and odometry-free localization system that works on off-the-shelf smartphones in a
sparse-anchor environment.
Deep Learning for Mobile Applications. Deep learning is becoming increasingly important for mobile
applications with the availability of large-scale data from mobile devices [23, 43]. Early works mostly focus on
city-wide applications such as traffic forecasting [52, 82], bike mobility modeling [80], and ride-hailing [22], while
recent works start to focus finer-grained applications such as gesture recognition [81], health monitoring [31],
and indoor localization [7, 8].

9 CONCLUSION
In this work, we perform the first study on couriers’ indoor encounters for the localization purpose in on-demand
delivery services. We found that couriers follow specific mobility patterns (such as the shortest path between
merchants) in an indoor environment, which offers us the opportunity to use dense encounter events to infer
the couriers’ real-time locations. To tackle some practical challenges, we design a novel GNN to aggregates the
encounter events and couriers’ reports to infer couriers’ relative locations to all the indoor merchants in the mall.
Based on the experiment results, our system can improve the localization accuracy significantly compared to the
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state-of-art anchor-based and encounter-based methods. We also show that our system can help the delivery
platform reduce the overdue rate and save money with a case study.
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