
O2-SiteRec: Store Site Recommendation under the
O2O Model via Multi-graph Attention Networks

Hua Yan∗†, Shuai Wang∗¶, Yu Yang‡, Baoshen Guo∗†, Tian He∗†, Desheng Zhang§
∗Southeast University, †Alibaba Group, ‡Lehigh University, §Rutgers University

{yanhua, shuaiwang, guobaoshen, tianhe}@seu.edu.cn, yuyang@lehigh.edu, desheng@cs.rutgers.edu

Abstract—The emergence of Online-to-Offline (O2O) stores
based on delivery platforms (e.g., Uber Eats, DoorDash, and
Eleme) provides great convenience to people’s lives. In the O2O
model, one of the essential problems for merchants is to select
a suitable store site, i.e., store site recommendation problem.
We argue that the existing works for the traditional brick-and-
mortar stores cannot address this problem due to two unique
factors in the O2O model including (i) dynamic supply caused
by courier capacity and dispatching strategies and (ii) various
customer demands caused by delivery distance and customer
preferences. To incorporate these new factors, we design O2-
SiteRec, a store site recommendation method under the O2O
model via multi-graph attention networks, which consists of (i)
a courier capacity model based on a multi-semantic relation
graph attention network to capture courier capacity; (ii) a
heterogeneous multi-graph based recommendation model, where
the courier capacity, customer preferences, and context features
are fused. We evaluate our method based on one-month real-
world data consisting of 39,465 stores and 23.6 million orders
from one of the largest O2O platforms in China. Experimental
results demonstrate that our method outperforms state-of-the-art
baselines in various metrics.

I. INTRODUCTION

Online-to-Offline (O2O) model is an increasingly important

business model in recent several years. In general, existing

brick-and-mortar stores or new stores first join an O2O plat-

form with large-scale customers, and then the platform directs

customers to these stores for online purchases. After the pur-

chases, the platform completes the rest of the procedure such

as payment, logistics, and delivery [1], [2]. A typical example

of such a model is on-demand delivery that a customer places

an order online through an O2O platform such as Instacart [3],

Uber Eats [4], Deliveroo [5], MeiTuan [6] and Eleme [7]; then

a courier picks up the order from a brick-and-mortar store and

delivers the order to the customer in a short time (e.g., from 30

minutes to 1 hour) [8], [9]. Compared to the traditional stores

that only accept orders by in-person visits of customers, the

stores under the O2O model working with a delivery platform

provide a great convenience for purchases without physical

traveling of customers, which attract more and more customers

especially during the pandemic.

In this work, we target on the problem of store site recom-

mendation under the O2O model. Existing work of store site

recommendation can be divided into two categories: (i) small-

scale survey-based methods and (ii) large-scale data driven
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methods. In the survey-based methods [10], [11], people care-

fully design questionnaires and interviews to obtain feedback

from small-scale volunteers, which may result in some biased

feedback. More recently, with the ubiquitously available in-

frastructures such as smartphones, we have a new opportunity

to collect large-scale multi-source data such as check-in data,

rating data, and search engine queries. Researchers analyze

these data and build feature-based machine learning models to

identify the site with potentially high profits for stores [12]–

[17]. Our work also falls into this category.

However, existing data-driven studies are mainly designed

for offline brick-and-mortar stores, which are not suitable

to solve the store site recommendation problem under the

O2O model due to significant differences in both supply and

demand aspects. (i) In the supply aspect, offline brick-and-

mortar stores only depend on factors such as good storage.

However, in addition to those factors, O2O stores are also

limited by the courier capacity in O2O platforms. For example,

if the capacity of couriers could not meet the real-time

customer demand, the platforms would shrink the delivery

scope of stores to reduce the demand, which directly reduces

the total number of orders of the stores [18]. (ii) In the demand

aspect, previous studies have validated the usefulness of store-

level customer preferences based on customer consumption

behavior [19]. However, as the service changes from offline to

online, the customer consumption behavior also evolves. For

example, to ensure short time delivery, people cannot place

the order in the far-away stores, which is not limited in the

traditional offline services as people can move in person.

To bridge the gap, we aim to design a store site recom-

mendation framework for O2O stores considering the new

aspects of both the supply and demand. The opportunity for

our work is that O2O platforms naturally record the infor-

mation of couriers and customers for accounting purposes,

which provide rich information of supply and demand for

store site recommendation under the O2O model. (i) In the

supply aspect, the platform collects couriers’ trajectory data

from APIs of online map service [20] deployed in couriers’

smartphones, which provides us the opportunity to explore the

impact of the courier capacity on store site recommendation;

(ii) In the demand aspect, customer order records provide us

the opportunity to exploit fine-grained customer preferences.

Leveraging these opportunities for store site recommenda-

tion has the following challenges. (i) For the supply aspect,

it is not straightforward to quantify the courier capacity and
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the relationship between the capacity and the O2O store site

recommendation. We found that a naive solution of counting

the number of couriers cannot reflect the actual capacity

(details in Section II-B1). Further, courier capacity dynami-

cally impacts both the store delivery scope and the customer

choice, which makes it a complex relationship. (ii) For the

demand aspect, the impact of surrounding customers on O2O

store site recommendation is affected by multiple dynamic

heterogeneous factors including the courier capacity, delivery

distance, customer preferences and historical interaction. It is

challenging to fuse the impact of these heterogeneous factors

for O2O store site recommendation.

To address these challenges, we design O2-SiteRec, a

store site recommendation framework based on multi-graph

attention networks. For the supply aspect, to capture the

courier capacity, we construct a courier mobility multi-graph

and utilize the delivery time to quantify the courier capacity.

Based on this graph, we design a courier capacity model

based on multi-semantic relation graph attention network to

obtain fine-grained courier capacity features. For the demand

aspect, we construct a region-type heterogeneous multi-graph,

which models the complex semantic relations among multiple

views of regions and store types in different periods. We

design a heterogeneous multi-graph based recommendation

model to capture customer preferences affected by multiple

heterogeneous factors and other interaction information for site

recommendation. In particular, our main contributions are as

follows.

• To our best knowledge, we are the first to study the store

site recommendation under the Online-to-Offline (O2O)

model. We analyze the unique characteristics of O2O

stores from both the supply (e.g., the additional delivery

courier capacity) and demand (e.g., the evolving customer

consumption patterns) aspects. These characteristics are

essential for store site recommendation under the O2O

model, which enable our work to address the limitations

of traditional store site recommendation methods.

• We design a novel store site recommendation framework

under the O2O model via multi-graph attention networks,

named O2SiteRec. It consists of (i) a courier capacity

model based on a multi-semantic relation graph attention

network to capture courier capacity features; (ii) a hetero-

geneous multi-graph based recommendation model with

node-level and time semantics-level aggregation, where

the courier capacity, customer preferences, and context

features are fused.

• We evaluate our framework based on one-month real-

world data consisting of 39,465 stores and 23.6 million

orders from one of the largest O2O platforms, i.e., Eleme.

We compare our model with three categories of baselines

including store site recommendation methods, graph-

based general recommendation methods and heteroge-

neous graph methods. The experimental results demon-

strate that the proposed approach outperforms other state-

of-the-art methods, which show 12.18% of improvement

in the NDCG@3 metric and 9.01% of improvement

in the Precision@3 metric. In addition, we rigorously

evaluate the effectiveness of critical components of our

model (e.g., the courier capacity model, the region-type

heterogeneous graph based recommendation model and

attention mechanisms) and the impacts of various factors

(e.g., different store types and different distributions of

candidate region sets) on the performance of our model.

The result shows that these critical components boost the

store site recommendation effect and our model performs

well for these various factors.

II. MOTIVATION

In this section, we first introduce the details of our dataset

and then describe observations of the supply aspect (i.e.,

courier capacity) and the demand aspect (i.e., customer be-

havior) that motivate our design.

A. Data

Our work is based on one of the largest O2O platforms

called Eleme, where we utilize three types of data including

(i) order data; (ii) couriers’ trajectory data; (iii) context data.

Order Data: A record in order data logs the information

including (i) spatial information such as the source location

(i.e., the store location) and the destination location (i.e., the

customer’s location) for order delivery; (ii) temporal infor-

mation such as order creating time, order pickup time, and

delivery time reported by couriers. Besides, we also have

other context data such as the distance between customers

and stores as well as store types. We list the fields utilized

in this work in Table I. In total, the order data includes 23.6

million orders involving 39,465 stores with 122 types (e.g.,

light meal, coffee and snack) in Chinese city Shanghai from

October, 2020 to November, 2020. To protect privacy, all

the customer ids are anonymized by the platform. Further,

customers’ exact locations are replaced by coarse-grained

regions with the size of 500 meters by 500 meters. In addition,

we utilize region-level aggregated customer statistics, which

do not reveal individual customers’ information. Similarly, the

store information is also pre-processed to protect privacy.

Couriers’ Trajectory Data: Couriers’ trajectory data contain

continuous location information obtained from smartphones

when couriers are working. The location information is up-

loaded to the platform every 20 seconds under courier consents

including courier ID, GPS locations, and timestamps.

Context Data: We further introduce the public data includ-

ing Point of Interests (POIs) and road networks to represent the

context information. We obtain POI data based on the open

API from an online map service provider [20] and extract

the road networks from OpenStreetMap [21]. These data are

utilized to describe the features of different regions in the city,

which are important for store site recommendation.

B. Supply Aspect: analysis of courier capacity

We discuss how to quantify the courier capacity and how

the courier capacity impacts stores and customers.
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TABLE I: An example of order data

Spatial
Store Longitude Store Latitude Customer Longitude Customer Latitude

121.4910 31.2495 121.4736 31.2357

Temporal
Order Creation Order Acceptance Pickup Reporting Delivery Reporting

10/19/2020 11:39 10/19/2020 11:40 10/19/2020 11:50 10/19/2020 12:23

Context
Store ID/Customer ID Order ID/Courier ID Customer-Store Distance (m) Store Type

S001/U001 O001/C001 3780 Cafe

Fig. 1: Order and courier count Fig. 2: Correlation of delivery
time and supply-demand ratio

1) How to quantify courier capacity: A straightforward

way to quantify the courier capacity is to count the number

of couriers. Fig. 1 shows the number of couriers (i.e., supply),

the number of orders (i.e., demand), and the supply-demand

ratio (i.e., the number of couriers divided by the number of

orders) every two hours in Shanghai. The number of couriers

and orders is normalized. We find there is the highest number

of couriers and orders during the noon rush hour of order

placement (i.e., from 10 am to 2 pm) and evening rush hour

(i.e., from 4 pm to 8 pm). If we utilize the number of

couriers to quantify the courier capacity, the courier capacity

is considered sufficient during these two periods. But in fact,

each courier is assigned with multiple orders due to surging

order quantity in these two periods, and the courier capacity

through counting the number of couriers is underestimated.

However, the supply-demand ratio can be utilized to represent

courier capacity. As shown in the Fig. 1, the supply-demand

ratio is lower in the noon rush hour and evening rush hour,

which indicates the lower courier capacity.

The supply-demand ratio mentioned above is at city-level

but it does not reflect the region-level supply-demand ratio,

which has a finer-grained spatial granularity for site rec-

ommendation. Directly applying the same calculation form

for the region-level supply-demand ratio is inaccurate due

to the mobility of couriers between different regions and

concurrent order dispatch. To solve the problem, intuitively,

we use delivery time as a measure of courier capacity. For

example, when the courier capacity is restrained, the delivery

time is increased due to assigning multiple orders to each

courier and dispatching long-distance couriers. We further

study the correlation between courier capacity (i.e., supply-

demand ratio) and delivery time. We calculate the supply-

demand ratio and delivery time every two hours for the

whole city in one month. Shown as in Fig. 2, the courier’s

delivery time is related to the courier capacity, which shows

the consistency with the city-level supply-demand ratio. In the

following analysis and design, we utilize the delivery time to

quantify the courier capacity.

Fig. 3: Average delivery scope
of stores

Fig. 4: Distribution of courier
capacity in different periods

2) The impact of courier capacity on stores: In Fig. 3, we

analyze the average delivery scope (measured by the farthest

delivery distance) of stores in 5 different periods (i.e., morning,

noon rush hour, afternoon, evening rush hour, and night). The

delivery scope of a store in different periods is inconsistent.

For example, compared with the afternoon and night, the

courier capacity is restrained at noon rush hour, and the

delivery scope is reduced. Due to the influence of the courier

capacity, the stores in different periods have different delivery

scopes. In order to ensure a good customer experience, the

platform conducts a pressure control process. The platform

controls delivery pressure by scaling up or down the delivery

scope. Each store has a multi-level delivery scope. At the rush

hour, the platform scales down the delivery scope because the

capacity is restrained. During the afternoon, it is considered

to scale up the delivery scope to attract customers. Therefore,

the courier capacity determines the delivery scope of the store,

which directly affects the number of orders.

3) The impact of courier capacity on customers: We study

the distribution of the courier capacity under the same delivery

distance, i.e., 2.5km-3km, in 5 periods as shown in Fig. 4. De-

livery time is different even under the same delivery distance

due to the various courier capacity of each region. The courier

capacity in different periods is not consistent, indicating that

it changes over time. For the delivery distance of 2.5km-

3km, customers are inclined to choose a store with a 20-30

min delivery time in the noon and evening rush hour. As the

delivery time increases, the number of corresponding orders

gradually decreases because the customer cannot tolerate the

long waiting time. In other words, the courier capacity affects

the customer’s time experience and choice. When conditions

permit, customers expect orders delivered as soon as possible.

If the delivery time is too long, the less chance that customers

choose this store.

4) Summary: The couriers act as a link between the stores

and the customers, where courier capacity has great impacts

on both the stores and the customers. On the one hand, courier

capacity determines the delivery scope of the store, which

527



directly affects the number of store orders. On the other hand,

courier capacity affects the customer’s time experience and

choice, which indirectly affects store orders.

C. Demand Aspect: analysis of customer behavior
1) The correlation of customer preferences and orders:

For orders in each region, we count the the number of orders

of each type. For customer preferences, we count the number

of orders of each type from customers of nearby regions in

a given range (e.g., 3km). Then we calculate the Pearson

correlation between the orders and customer preferences.

TABLE II: Correlation between customer preferences and

orders in different radius

Radius (km) 1 2 3 4 5

Correlation coefficient 0.725 0.726 0.736 0.720 0.710

We show the results in Table II. We can see that the

correlation coefficient between customer preferences and or-

ders is greater than 0.7 for different given ranges. When

the correlation coefficient is greater than 0.6, it is typically

considered to be strongly correlated. In addition, there are

tiny differences in various ranges. The customer preferences

around 2-3km are most relevant because these customers are

the primary consumers of these stores. For stores over 3km,

they may be out of the delivery scope. For stores within 2km,

customers may choose to pick up in person instead of using

O2O services.
2) Customer preferences in different periods: We count the

total number of orders for each store type in five periods in

the whole city and then rank them. We select the top 3 store

types for each period to study the customer preferences at

different periods. As shown in Fig. 5, we can see that the

Fig. 5: Top popular store types in the whole city in different periods

preferences of customers in diverse periods are different. There

are two main reasons for this phenomenon: (i) The preferences

of customers in diverse periods are inherently different. (ii)

There are different population in the same area at different

periods. For example, some people go to work in one region

in the morning and return to another region after getting off

work in the evening.
3) Summary: The data analysis shows that the correlation

coefficient between customer preferences and orders is high,

where customer preferences play an important role in store site

recommendation under the O2O model. Further, the customer

preferences change over time as the preferred stores are

changing along the day, which motivates us to consider diverse

time periods in the modeling part.

III. DESIGN OF O2-SITEREC

A. Preliminary

Definition 1: Region. The city is partitioned as a set of

two-dimensional grids with a size of ξ × ξ (e.g., ξ = 500m).

Each grid represents a region.

Definition 2: Region Geographical Graph. We utilize a

graph Gge = {V,Ege} to model geographical proximity

between regions, where V denotes the node set with node

r ∈ R representing regions and the edge Ege(ri, rj) represents

the connection between ri and rj with a distance less than a

threshold (i.e., 800m). The attribute of the edge Ege(ri, rj) is

the distance between two regions.

Definition 3: Courier Mobility Graph. We utilize a graph

Gt
c = {V,Et

c} to model the actual delivery time of the courier

between regions during period t, where the edge Et
c(ri, rj)

represents that couriers have mobility behavior between region

ri and region rj . The attribute of the edge Et
c(ri, rj) is the

delivery time from region ri to region rj .

In addition, the mobility status of the courier changes over

time. We utilize a multi-graph structure [22] to represent this

heterogeneous interaction. Courier mobility multi-graph is

defined as a multi-graph Gc = ∪{Gt
c} = (V,Ec), where Ec =

{Et1
c , Et2

c , ...} represents the edge set in different periods.

2ݏ1ݏ 2ݑ1ݑ1ܽ2ܽ
Store region (S)
Customer region (U)
Store type (A)
S-U edges (ܵܧ−ܷt )
S-A edges (ܣ−ܵܧ)
U-A edges (ܣ−ܷܧt )

Period t

Fig. 6: Region-Type
Heterogeneous Graph

Definition 4: Region-Type Het-
erogeneous Graph. Each region has

two views: store view and customer

view. In the store view, we define

store-region as the region under the

store view that represents which types

of stores are available in this re-

gion. In the customer view, we define

customer-region as the region un-

der the customer view that represents

which types of stores are preferred by

customers in this region. Note that

both the store-region and customer-

region are the subset of all the regions. We utilize a hetero-

geneous graph Gt
h = {Vh, E

t
h, Xh} to model the relations

among regions in different views and store-type in period t,
which is shown in Fig. 6. Vh are nodes consisting of store-

region nodes s ∈ S, customer-region nodes u ∈ U and store-

type nodes a ∈ A. Xt
h is node attributes, which is detail in

Section III-C. Et
h are edges consisting of S-U edges Et

S−U ,

S-A edges ES−A and U -A edges Et
U−A.

• Et
S−U (s, u) means that the customer-region u is in the

delivery scope of the store-region s in period t. Based

on historical delivery scopes and distances, we calculate

probabilities and determine which nodes have edges be-

tween them, to consider the impact of courier capacity on

the delivery scope of the store. Specifically, for a target

region, we first shrink down the candidate regions within

its farthest delivery distance. We build an edge between

the target region and a candidate region if the distance is

less than the average delivery distance. Otherwise, we

calculate an order ratio (i.e., the number of historical
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orders of these candidate regions with the target region

divided by the total number of historical orders of the

target region) to determine whether there is an edge .

We filter out regions with low order ratios because there

may be some exception orders. The edge attribute φsu,t is

a multi-dimensional vector composed of various factors

that affect the interaction between the customer and the

store in period t (details in Section III-C).

• ES−A(s, a) means that there are stores with the store-

type a in the store-region s. The edge attribute φsa is

a multi-dimensional vector, which contains commercial

features and the history order number (details in Section

III-C).

• Et
U−A(u, a) means that customers in the customer-region

u prefer the store with store-type a in period t. The edge

attribute φua,t is the number of historical transactions.

In addition, customer preferences and the interaction between

the customer-region and the store-region change over time,

which means that edges are different in different periods.

To incorporate the changes, we define Region-Type hetero-
geneous multi-graph as a multi-graph Gh = ∪{Gt

h} =
(Vh, Eh, Xh), where Eh = {Et1

h , Et2
h , ...} denotes edge sets

in different periods.

Problem Formulation. We formulate the problem of store

site recommendation under the O2O model as follows:

p̂sa = Fθ(Gh, Gc, Gge) (1)

we input the region-type heterogeneous multi-graph Gh,

courier mobility multi-graph Gc and region geographical graph

Gge to learn a model Fθ that can predict the number of orders

psa of the target type a (e.g., light meal and snack) in the

region s.

After obtaining the model, for a given target store type a,

we utilize the model to predict the number of orders for all

candidate store-regions S = (s1, s2, ..., sj) and select the top-

ranked regions as recommendation results.

B. Overview

The framework of O2-SiteRec is given in Fig. 7, which

consists of the following three modules:

Module 1: Data processing. We first extract features from

the context data and order data. These features are utilized as

attributes of nodes and edges in the region-type heterogeneous

multi-graph (details in Section III-C).

Module 2: Courier capacity modeling. Based on the courier

mobility multi-graph, we design a courier capacity model

to capture fine-grained courier capacity embedding, which is

utilized as the input for the region-type heterogeneous multi-

graph (details in Section III-D).

Module 3: Heterogeneous multi-graph based recommen-
dation. Based on the region-type heterogeneous multi-graph

and edge embedding from the courier capacity model, we

design a heterogeneous multi-graph based recommendation

model with node-level and semantics-level aggregations to

capture customer preferences affected by multiple factors and

Courier mobility graph

Different periods

Courier 
capacity 
model 

Heterogeneous 
multi-graph based 
recommendation 

model

Feature extraction & Graph construction

Courier data

Auxiliary task 

Order data

Edge 
embedding

Data processing Sec. III-

Courier capacity modeling
Sec. III-

Different periods

R
ecom

m
endationRegion - Type heterogeneous graph

Heterogeneous multi-graph 
based recommendation Sec. III-

Context data

Fig. 7: Framework of O2-SiteRec

interaction information between store-region and store-type

(details in Section III-E).

C. Data Processing

We first extract geographic features including POI set, POI

diversity, traffic convenience, and store diversity for each

region. These geographic features are considered as attributes

of both the store-region node and the customer-region node.

• POI set: it is a vector, where each dimension represents

the number of POIs in a specific type in each region.

• POI diversity: it is defined as the information entropy of

the proportion of all types of POI appearing in a region.

• Traffic convenience: it is a vector composed of the

number of intersections and roads in a region.

• Store diversity: it is defined as the information entropy

of the proportion of all types of stores in a region.

In addition, for a specific type a in a store-region s, we

extract commercial features [17] including competitiveness

and complementarities. These features are attributes of ES−A.

• Competitiveness: it reflects competition from nearby

stores of the same type, which is defined as the number

of stores of the same type in the region divided by the

total number of nearby stores.

• Complementaritiess [12], [15], [17]: it represents that

stores of different types can potentially benefit each

other because of their complementary characteristics

e.g., coffee shop and bread shop. It is defined as

f cp
sa =

∑
a∗ log(ρa∗−a)(Nsa∗ − Na∗), where ρa∗−a =

2Nset(a
∗,a)

NA(NA−1) ; Nsa∗ is the number of stores with type a∗ in

region s; Na∗ is the average number of stores of type a∗

that appear in all regions; Nset(a
∗, a) is the appearance

number of the pair-wise type a∗ and a; NA is the number

of all the store types.

We also extract features that affect the interaction between

the customer-region and the store-region including distance

and historical transaction records, which are used as the

attributes of Et
S−U .

• Distance: it is defined as the distance between the store-

region and the customer-region.

• Historical transaction records: it is defined as the number

of historical transactions between the store-region and the

customer-region.
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Node (region) 
embedding

Edge embedding
(courier capacity embedding)

Courier mobility graph

Region

Mobility relation edges 

Geographical relation edges 
Reconstruct

Geographic semantic 
aggregation

(from region geographical graph)

Mobility semantic aggregation
(from courier mobility graph)

MLP

Output

The attribute of 
mobility edge in 

the courier 
mobility graph

Fig. 8: Design of courier capacity model. (i) For each region node,
we get the node embedding by geographic semantic aggregation
and mobility semantic aggregation. (ii) We concatenate two node
embeddings as the edge embedding to reconstruct the attribute of
the mobility edge in the courier mobility graph. (iii) We output the
obtained edge embedding of courier capacity.

D. Courier Capacity Modeling

It is not straightforward to capture the fine-grained courier

capacity due to courier mobility. Intuitively, geographically

adjacent regions have similar courier capacity, and regions

with mobility relations have some correlation. We design a

courier capacity model based on a multi-semantic relation

graph attention network to capture courier capacity.

For each subgraph Gt
c of period t, we conduct the following

steps as shown in Fig. 8. We first find two kinds of neigh-

bors for each node, i.e., geographic semantic neighbors and

mobility semantic neighbors from region geographical graph

and courier mobility graph, respectively. We get the node

embedding by geographic semantic aggregation and mobility

semantic aggregation, which are concatenated as the edge

embedding to reconstruct the attribute of the mobility edge

in the courier mobility graph. The edge embedding is then

utilized as an input for the region-type heterogeneous multi-

graph (details in Section III-E). Further, the training of this

module is utilized as an auxiliary task to optimize the training

of the main task.

1) Geographic semantic aggregation: we represent each

region i with an initial embedding b0i ∈ R
d1 , where d1 is the

embedding size. For the geographic neighborhood Ngeo
i of the

region i, we utilize the distance between regions to calculate

the weights, which is defined as

αgeo(i, j) =
exp(dis(i, j))∑

k∈Ngeo
j

exp(dis(k, j))
(2)

where dis(i, j) represents the distance between region i and

region j. We get the embedding blg,i of the region i after the

l-th geographic semantic aggregation, which is defined as

blg,i = σ(
∑

j∈NGeo
i

αgeo(i, j)bl−1
g,j ) + bl−1

g,i (3)

where bl−1
g,j represents the embedding of region j after the (l-

1)-th geographic semantic aggregation and σ(·) is an activation

function.

2) Mobility semantic aggregation: For the semantic neigh-

borhood Nmob
i of the region i, we calculate the weights

αmob(i, j) between different neighbors according to GAT [23],

which is defines as αmob(i, j) = softmax(σ(ψT [b0i , b
0
j ])).

Then we get the embedding bs,i of the region i after the

mobility semantic aggregation, which is defined as

bs,i = σ(
∑

j∈Nmob
i

αmob(i, j)b0j ) + b0i (4)

where ψ is the parameterized attention vector. b0i and b0j are

initial embeddings of region i and region j respectively.

3) Obtain edge embeddings by reconstructing the attribute
of mobility edge in courier mobility graph: The final em-

bedding bi of the region i is calculated by combining the

embedding of the two aspects (i.e., geographic and mobility),

which is defined as

bi = σ(Wb[b
l
g,i, bs,i]) (5)

where Wb is a trainable weight. We combine two region

embeddings as the edge embedding emc
i,j and then feed it

into the MLP for delivery time prediction, which is defined

as D̂T i,j = σ(W1[bj , bi]). W1 is a trainable weight. The loss

functions of the task is defined as

O1 =
1

|E|
∑

i,j∈E
||DTi,j − D̂T i,j || (6)

where |E| is the number of observed edges in the courier

mobility graph. DTi,j is the ground truth delivery time in

the courier mobility graph. The edge embedding containing

courier capacity is utilized as an input for the region-type

heterogeneous multi-graph.

E. Heterogeneous Multi-graph based Recommendation

Intuitively, whether a region is suitable for a specific

store type is affected by customer preferences around it. We

construct a region-type heterogeneous multi-graph to model

complicated relations among store-region, customer-region,

and store-type. Specifically, we design a heterogeneous multi-

graph based recommendation model to capture customer pref-

erences and the interaction information between store-region

and store-type for site recommendation. The model contains a

node-level aggregation to consider the effect of edge attributes

(e.g., multiple factors) and a time semantics-level aggregation

to consider multi-graph structure.

Fig. 9 depicts the design of the heterogeneous multi-graph

based recommendation model consisting of five major steps

including (1) node attributes fusion; (2) edge attributes fusion

for the Et
S−U ; (3) node-level aggregation to obtain store-

region embeddings and store-type embeddings in different

periods; (4) result fusion from different subgraphs by the time

semantics-level aggregation; (5) order number prediction.
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Fig. 9: Design of heterogeneous multi-graph based recommendation model

1) Node attributes fusion: we represent each node ID with

an embedding to represent the latent features. Formally, we

represent store-region s, customer-region u and store-type a
with initial embeddings h

′
s ∈ R

d2 , z
′
u ∈ R

d2 and q
′
a ∈ R

d2 ,

respectively, where d2 is the embedding size. Then we fuse the

initial embedding and node attributes to get the node fusion

embedding. Fusion embeddings of store-region, customer-

region and store-type are defined as h0
s = σ(WS [h

′
s, fs]),

z0u = σ(WU [z
′
u, fu]) and q0a = q

′
a.

2) Edge attributes fusion: For Et
S−U (s, u), we fuse the

edge attributes φus,t with the edge embedding emc
us,t from the

courier capacity model to obtain the new combined edge at-

tributes, which contains multiple factors including the courier

capacity, delivery distance, and historical interaction. The new

edge attributes φ
′
us,t is defined as φ

′
us,t = [φus,t, em

c
us,t].

3) Node-level aggregation: For the subgraph Gt
h in period

t, each node aggregates information from its neighbors to

update its node embedding when performing the node-level

aggregation. Specifically, we get the store-region node embed-

ding and the store-type node embedding by the store-region

modeling and the store-type modeling, respectively.

(i) Store-Region Modeling. On the one hand, for the target

node store-region, we learn preferences of customer-regions

within its delivery scope through Et
S−U . On the other hand, we

capture the high-order interaction information between store-

regions and store-types through ES−A. The embedding hl
s,t

of the store-region node s after l-th aggregation is defined as

hl
s,t = σ(W l

S(Aggre(z
l−1
u,t |u ∈ N t

S−U (s))+

Aggre(ql−1
a,t |a ∈ NS−A(s)) + hl−1

s,t ))
(7)

where W l
S is trainable weight. N t

S−U (s) and NS−A(s) repre-

sent neighbors of store-region s based on Et
S−U and ES−A,

respectively. Aggre is a aggregation function, which is de-

fined in detail later. zl−1
u,t , ql−1

a,t and hl−1
s,t are embeddings of

customer-region node u, store-type node a and store-region

node s after (l-1)-th aggregation. For customer-region node u,

the embedding zlu,t capture the store-type it prefers through

Et
U−A after l-th aggregation, which is defined as

zlu,t = σ(W l
U (Aggre(q

l−1
a,t |a ∈ N t

U−A(u)) + zl−1
u,t )) (8)

where W l
U is trainable weight and N t

U−A(u) represent neigh-

bors of customer-region u based on Et
U−A.

(ii) Store-Type Modeling. For the target node store-type,

we capture the store-region it interacts with and high-order

information through ES−A. The embedding qla,t of store-type

node a after l-th aggregation is defined as

qla,t = σ(W l
A(Aggre(h

l−1
s,t |s ∈ NA−S(a)) + ql−1

a,t )) (9)

where W l
A is trainable weight and NA−S(a) represent neigh-

bors of store-type a based on ES−A.

Aggregation function (Aggre). In order to consider the dif-

ferent edge types and attributes of edges in the heterogeneous

graph, we design an aggregation function, which estimates the

importance of each source node by the node attributes, the

edge attributes, and the edge type.

We utilize the multi-head attention mechanism [24] to

calculate the importance score. In the following, we utilize

the store-region node (i.e.,target node) and the customer-

region node (i.e., source node) as an example. Firstly, in order

to take into account the effect of different edge types, we

set a trainable parameter We, which is shared by the same

edge type. Secondly, in order to utilize the edge attributes,

we combine the embedding zl−1
u,t of the source node (e.g.,

customer-region u) and the edge attributes φus,t as a fused

vector. For the i-th attention head, we project the fuse vector

above into the i-th key vector with a linear projection W i
k,U .

The i-th key vector Ki(u) is defined as

Ki(u) = W i
k,Uσ(W [zl−1

u,t , φus,t]) (10)

Similarly, we project the target node (e.g., store-region node

s) into the i-th query vector with a linear projection W i
q,S .

The i-th query vector Qi(s) is defined as Qi(s) = W i
q,Sh

l−1
s,t .
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Finally, we combine the query vector, the key vector and the

edge type to calculate the importance of the i-th attention head

and normalize it with the softmax function [25] to get the

weight of the i-th attention head, which is defined as

αi(u, s) = softmax(σ(Ki(u)WeQ
i(s)T )) (11)

Then we aggregate the information of neighboring nodes

and concatenate the output of the multi-head attention to get

the final representation of Aggre, which is defined as

Aggre(zl−1
u,t |u ∈ N t

S−U (s)) =
I

||
i=1

σ(
∑

u∈Nt
S−U (s)

Ki(u)αi(u, s))

(12)

where || denotes the vector concatenation operator.

4) Time semantics-level aggregation: With the embedding

of the store-region and the store-type (i.e., hl
s,t and qla,t) in

each subgraphs during period t, we first concatenate them

to get an embedding Hsq,t defined as Hsq,t = [hl
s,t, q

l
a,t].

Considering different regions and store types generally have

unequal importance in different periods (e.g., breakfast stores

are busier in the morning period), we utilize a multi-head

attention mechanism to calculate the importance of each

period. For the i-th attention head, we project the concatenated

embeddings from all the periods into the i-th key vector

Ki
tj (Hsa) with a linear projection W i

k, which is defined as

Ki
tj (Hsa) = W i

k[Hsa,t1 , Hsa,t2 , ..., Hsa,tJ ] (13)

Then we project the embedding Hsa,tj for period tj into the

i-th query vector Qi
tj (Hsa) with a linear projection W i

q .

Qi
tj (Hsa) = W i

qHsa,tj (14)

The attention weight αi
tj is computed as the inner product

of the query vector and key vector and normalized with the

softmax function. Finally, we calculate the weight sum of the

key vector Ki
tj (Hsa) and concatenate the output of the multi-

head attention as the final embedding Hsa, which is defined

as

Hsa =
I

||
i=1

σ(
J∑

j=1

αi
tjK

i
tj (Hsa)) (15)

5) Prediction: we feed the embedding Hsa into a mul-

tilayer perceptron (MLP) for order number p̂sa prediction,

which is defined as p̂sa = σ(W2Hsa). The loss function O2

of this task is defined as

O2 =
1

|N |
∑

s,a∈N
(p̂sa − psa)

2 (16)

where |N | is the number of observed data and psa is the

ground truth order number about store-region s on the store-

type a.

F. Model Training Process

The objective function that combines the two tasks is

formulated as

Loss = O2 + βO1 (17)

where β is a trade-off parameter. There are four initial

embeddings in our model, and they are randomly initialized

and jointly learned during the training stage. To alleviate the

overfitting, the dropout strategy is applied to our model.

IV. EVALUATION

In this section, we conduct extensive experiments to answer

the following research questions.

• RQ1: How does our model O2-SiteRec perform com-

pared with baselines?

• RQ2: How effective are the courier capacity and customer

preferences for store site recommendation under the O2O

model?

• RQ3: How effective are our technical components (i.e.,

node-level aggregation and time semantics-level aggrega-

tion)?

• RQ4: How do factors impact the performance?

• RQ5: How do hyper-parameters affect the performance?

A. Evaluation Methodology

1) Datasets: We conduct experiments on a real-world

dataset and a simulation dataset, respectively. Details of the

real-world dataset are in Section II-A. In addition, we build a

simulation dataset to verify the generalizability of our model.

Specifically, we utilize an open dataset [26], [27], which lacks

our necessary attributes (i.e., customer location and store type).

We match it with data in the database to get the store type.

Then we use distance to randomly generate the customer’s

location based on historical transaction patterns.

2) Ground truths and experiment settings: We utilize the

number of orders of each type in a region as the ground truth.

In each experiment, we randomly select 80% of historical in-

teractions (i.e., the number of orders) between store-region and

store-type as training data and the rest as test data. Specifically,

we train our model based on 80% of the data then apply it

in the rest 20% of the data to predict the number of orders

in candidate regions for each target type. Multiple rounds of

experiments are conducted to show the result variance and

statistical test. Each region has the size of 500m × 500m

in the experiments. By comparing our prediction results with

the ground truth, we evaluate our performance. We utilize the

average value from all types in test data as the final result.

3) Implementation: We implement our method and base-

lines with Pytorch 1.7.0 in Python 3.8 environment and train

it with 16GB memory and Tesla V100-SXM2 GPU. The

embedding size of the courier mobility multi-graph is set to

20, and the embedding size in the region-type heterogeneous

multi-graph is set to 90. We apply Adam optimizer, and the

learning rate is set to 1e-4. The activation function of network

layers is ReLU, and the batch size is set to 128. For multi-head
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attention-based methods, We set head number as 5 in node-

level aggregation and head number as 2 in time semantic-level

aggregation. The parameter β in the loss function is set to 0.2.

We set the layer l as 2.

4) Metrics: We evaluate the model with both the prediction

accuracy and the ranking metrics.

Prediction accuracy: We utilize Root Mean Squared Er-

ror (RMSE) to evaluate our model.

Ranking:

• Normalized Discounted Cumulative Gain (NDCG): We

choose the NDCG defined in [12] which considers the

hit positions of the regions and has a higher score if the

hit regions in the top positions.

• Precision

Precision@K =
LK ∩ LN

k
(18)

where LK is the list of the top k predicted regions and

LN is the list of the top N regions with the greatest order

number. In the experiments, we set N to 30.

5) Baselines: We compare our model with four categories

of baselines including store site recommendation methods

based on collaborative filtering, graph-based general recom-

mendation methods, heterogeneous graph methods, and vari-

ants of our model.

Store site recommendation baselines:
• CityTransfer [17]: CityTransfer is a store site recommen-

dation method based on matrix factorization. Considering

our work is in a different setting, we discard the inter-city

knowledge association module.

• BL-G-CoSVD [15] : BL-G-CoSVD is a method based

on matrix factorization, which recommends store types.

Graph-based general recommendation baselines:
• GraphRec [28]: GraphRec is a graph-based general

recommendation method. In our work, we utilize the sub-

graph (i.e., the store-region and customer-region bipartite

graph) in the region-type heterogeneous graph to replace

the social graph.

• GC-MC [29]: GC-MC is a general recommendation

system with a graph neural network architecture.

Heterogeneous graph baselines:
• RGCN [30]: RGCN is the first paper in the graph neural

network field that considers different types of edge. In

our work, we utilize RGCN to deal with region-type

heterogeneous multi-graph.

• HGT [31]: HGT is a heterogeneous graph method.

we utilize HGT to deal with region-type heterogeneous

multi-graph.

Each baseline is presented with two settings considering the

different settings in the O2O model.

• Original: baselines are trained with features defined in

the original papers.

• Adaption: considering the uniqueness of the O2O model

and the task of store site recommendation, we add addi-

tional features (e.g., courier capacity features, customer

preference features, and location-based features) to the

baselines. For the customer preferences in a region, we

use the number of orders of each type from customers of

all the nearby regions in a predefined range (i.e., 2km);

for the delivery time in a region, we use the average

delivery time of all history orders in this region. If there

are missing values in one region, we utilize the average

value of the nearby regions to complete it.

Variants of our model:
• O2-SiteRec without Courier Capacity (w/o Co): In

order to verify the impact of courier capacity, the courier

capacity model is removed. In addition, the S-U edges in

the region-type heterogeneous multi-graph is constructed

without considering courier capacity. The results are in

Sec IV-C1.

• O2-SiteRec without Courier Capacity & Customer
Preference (w/o CoCu): we remove the courier capacity

model as well as two edges (i.e., S-U edges and U-A

edges) in the region-type heterogeneous multi-graph to

verify the role of both courier capacity and customer

preferences. The results are in Sec IV-C1.

• O2-SiteRec without Node-Level Attention (w/o NA):
To verify the effect of multiple heterogeneous factors

and the aggregation function we design in node-level

aggregation, we utilize mean aggregation to replace the

aggregation function we designed in node-level aggrega-

tion. The results are in Sec IV-C2.

• O2-SiteRec without Time Semantics Level Attention
(w/o SA): In order to verify the role of the multi-head

attention mechanism in time semantics-level aggregation,

we utilize mean aggregation to replace the attention

mechanism. The results are in Sec IV-C3.

B. Overall Performance (RQ1)

We compare our approach with the baselines on two datasets

and report the comparison results in Table III and Table IV,

respectively. The results are the average performances of all

the store types in test data. In the experiments of the simulation

data, each baseline is only presented with Adaption settings

and some metrics in Sec IV-A4 due to space limitation.

Overall, our method O2-SiteRec consistently outperforms

all the baseline methods on two datasets. The performance on

the simulation dataset is worse than the real-world dataset due

to the noise generated by the simulation and data sparsity. We

also conduct a t-test for the significance test that our results

are statistically significant with p-value<0.05 compared to the

best baseline HGT.

Comparison to store site recommendation baselines (i.e.,
CityTransfer and BL-G-CoSVD). Our model is better than

the site recommendation baselines for brick-and-mortar stores

on two datasets. The possible reason is that just using location-

related features for site recommendation cannot be adapted to

the O2O scenario due to the courier capacity and the evolving

customer consumption patterns. When we add the courier and

customer features, the performance of these models improves,

which indicates that the information of couriers and customers

contribute to store site recommendation under the O2O model.
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TABLE III: Performance comparison of different approaches on the real-world data

NDCG@3 NDCG@5 NDCG@10 Precision@3 Precision@5 Precision@10 RMSE

CityTransfer
Original 0.6013 0.6234 0.6298 0.8056 0.8001 0.7902 0.0698
Adaption 0.6192 0.6316 0.6445 0.8199 0.8137 0.7925 0.0687

BL-G-CoSVD
Original 0.5740 0.5865 0.5904 0.7608 0.7685 0.7522 0.1180
Adaption 0.5776 0.5933 0.6088 0.7465 0.7706 0.7603 0.1101

GC-MC
Original 0.5445 0.5585 0.5837 0.7365 0.7350 0.7451 0.0705
Adaption 0.5715 0.5825 0.6036 0.7598 0.7623 0.7501 0.0692

GraphRec
Original 0.5762 0.5825 0.6003 0.7821 0.7513 0.7266 0.0687
Adaption 0.6274 0.6251 0.6398 0.8287 0.8124 0.7967 0.0680

RGCN
Original 0.5457 0.5537 0.5789 0.7593 0.7575 0.7279 0.0697
Adaption 0.5524 0.5711 0.5993 0.7892 0.7641 0.7378 0.0684

HGT
Original 0.6149 0.6127 0.6258 0.8145 0.7984 0.7667 0.0681
Adaption 0.6331 0.6298 0.6409 0.8276 0.8195 0.7762 0.0678

O2-SiteRec - 0.7102** 0.6978** 0.7003* 0.9034* 0.8701* 0.8232* 0.0637*
** (*) means the result is significant according to T-test at level 0.01 (0.05) compared to HGT.

TABLE IV: Performance comparison of different ap-

proaches on the simulation data

NDCG@3 NDCG@5 Precision@3 Precision@5

Citytransfer 0.5677 0.6017 0.7777 0.7333

BL-G-CoSVD 0.5669 0.5993 0.7555 0.7066

GC-MC 0.5618 0.5935 0.7800 0.74333

GraphRec 0.5489 0.5801 0.7619 0.7238

RGCN 0.5499 0.5751 0.8040 0.7600

HGT 0.5657 0.6028 0.7963 0.7666

O2-SiteRec 0.6201* 0.6509* 0.8667* 0.8200*
* means the result is significant according to T-test at level 0.05
compared to HGT.

Comparison to graph-based general recommendation
baselines (i.e., GraphRec and GC-MC). Graph-based rec-

ommendation methods are not as effective as our method

due to the inability to capture complex relationships in the

heterogeneous graph. These methods do not perform well

in the Original setting while the performance improved in

the Adaption setting, which means that it is difficult to

utilize general recommendation methods directly for store site

recommendations without considering the unique context.

Comparison to heterogeneous graph baselines (i.e.,
RGCN and HGT). Heterogeneous graph methods can cap-

ture practical information such as user preferences from the

heterogeneous graph. However, they are still not as effective as

our method. The possible reason is that they cannot consider

the effect of edge attributes (e.g., multiple factors between

store-region and customer-region) and multi-graph structure.

In addition, we notice that HGT outperforms RGCN. The

possible reason is that RGCN only utilizes simple message-

passing that cannot fully capture the relationship.

C. Ablation Study (RQ2 & RQ3)

1) The impact of the courier capacity and customer pref-
erences: To understand the roles of courier capacity and

customer preferences, we compare O2-SiteRec with its two

variants (i.e., w/o Co and w/o CoCu).

The performance of O2-SiteRec and its variants is shown

in Fig. 10. Firstly, we analyze the effectiveness of the

courier capacity. When we do not consider any influence

of the courier capacity, O2-SiteRec w/o Co performs worse

(a) NDCG@K (b) Precision@K

Fig. 10: The impact of the courier capacity and customer preferences

(a) NDCG@K (b) Precision@K

Fig. 11: The effect of attention mechanisms

than O2-SiteRec. It means that courier capacity is essential

for boosting the recommendation performance. Secondly, we

further investigate the impact of customer preferences. We

find that without considering courier capacity and customer

preference, the performance of recommendation deteriorates

significantly. It justifies our assumption that courier capacity

and customer preferences play an important role in store site

recommendation under the O2O model, which improves the

performance of store site recommendation.

2) The effect of node-level attention: To get a better under-

standing of the technical design, we further evaluate the effect

of attention mechanisms. There are two different attention

mechanisms in node-level aggregation and time semantics-

level aggregation. We compare O2-SiteRec with its two vari-

ants (i.e., w/o NA and w/o SA).

The results of the node-level attention on O2-SiteRec are

shown in Fig. 11. We observe that O2-SiteRec w/o NA

has worse performance than O2-SiteRec. In the node-level

attention, we consider the node attributes, the edge attributes

(e.g., multiple heterogeneous factors), and the edge types when

calculating the importance. O2-SiteRec w/o NA replaces the

aggregation function we designed by mean aggregation. These
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(a) HGT (b) GraphRec

Fig. 12: Performance of different store types on the baselines

Fig. 13: Performance of differ-
ent store types on O2-SiteRec

Fig. 14: The impact of the geo-
graphic distribution of regions

results demonstrate (i) multiple heterogeneous factors affect

the interaction between store-region and customer-region; (ii)

aggregation function in the node-level aggregation can effec-

tively consider the influence of the edge attributes and the edge

types.

3) The effect of time semantics-level attention: The results

of time semantics-level attention on O2-SiteRec are shown in

Fig. 11. We observe that O2-SiteRec w/o SA obtain worse

performance than O2-SiteRec. In O2-SiteRec w/o SA, we

utilize mean aggregation to replace the attention mechanism.

These results demonstrate that (i) various types of stores have

different concerns for different periods; (ii) the time semantics-

level attention effectively distinguishes the importance of

different periods.

D. Impacts of Factors (RQ4)

1) Results for different store types: Different store types

generally have different region preferences. In order to have a

clear understanding of the recommendation results for different

types of stores, we select six types (light meal, light salad,

fruit, steamed buns, juice, and fried chicken) to show the

results, respectively. These six types are selected based on two

principles: (i) the selected types have particular popularity;

(ii) the selected types are common in daily life. We show

the results of O2-SiteRec and other baselines in Fig. 12 and

Fig. 13, respectively. We only present the result of HGT and

GraphRec due to the space limitation.

The result shows that O2-SiteRec has good performances

in most of the store types. In addition, we noticed some

variability in the results for different types of stores, which

may be determined by the inherent properties of the store type

and how much data is available. For example, the stores with

the type of steamed bun perform slightly worse than other

types. The reason could be that people are more likely to finish

their breakfast on the way to work rather than ordering food

through O2O platforms due to time constraints. Besides, the

variation in the performance of our model across store types

is relatively small compared to other baselines.

Fig. 15: Effect of different em-
bedding sizes

Fig. 16: Performance with dif-
ferent β

2) The impact of the geographic distribution of regions: In

this part, we verify the performance of our method in different

types of regions (i.e., geographic distribution). Specifically, we

consider three types: downtown, suburb, and average (i.e., all

the regions). As shown in Fig. 14, we can see that our model

generally performs well for the various distribution of regions.

The downtown regions perform slightly better than the average

regions. The suburban regions performs worse than the other

two settings. The main reason is that there are sparse data and

insignificant features in the suburbs and it is challenging to

discover the pattern of store sites.

E. Parameter Sensitivity (RQ5)

1) Effect of Different Embedding Sizes: Fig. 15 shows

the performance comparison w.r.t. the size of embedding

in the region-type heterogeneous multi-graph. Overall, the

performance is relative stable under different sizes. The best

embedding size is 90. It indicates that a smaller embedding

size has insufficient representation while a larger embedding

size may increase complexity and cause overfitting. Given the

space limitation, we only present the result of NDCG@3 while

other matrices have the similar observations.

2) Performance with different β: We further study the

sensitivity of our model to the parameter β. We present the

result based on NDCG@3 in Fig. 16. The overall performance

is stable. In our work, we select 0.2, which produces the best

result for our model.

V. DISCUSSION

Lessons learned: Based on the results from our paper, we

summarize the following lessons learned:

• Store site recommendation under the O2O model should
take the courier capacity and customer preferences into
consideration, which makes it significantly different from

the traditional brick-and-mortar store site recommenda-

tion. As shown in Fig. 10, the performance deterio-

rates significantly when ignoring the courier capacity

and customer preferences. Similar results are obtained in

the comparison of our model with baselines of Original

setting in Table III.

• Multiple heterogeneous factors influence the interaction
between store-region and customer-region. The perfor-

mance of the model deteriorates when multiple hetero-

geneous factors are removed (as shown in Fig. 11). It

also validates that the critical component of our model,

i.e., node-level aggregation, effectively exploits the effect

of multiple heterogeneous factors.
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• Various types of stores in different regions are sensitive
to different periods. As shown in Fig. 5, the popularity

of store types changes a lot in different periods. We

model this with time semantics-level aggregation, which

improves the performance as shown in Fig. 11.

Limitation: (i) We evaluate our model O2-SiteRec on a

real-world dataset from one of the largest O2O platforms in

China. However, due to the privacy and sensitivity of data,

the period of evaluation datasets is one month and only in

Shanghai. We further expect to analyze our model with the

dataset from multiple cities and with long periods. (ii) In

fact, many stores are registered on more than one platform.

The model could be more accurate if we can obtain the

data from multiple platforms. (iii) We only consider simple

geographic proximity competition and complementarity while

store competition under the O2O model becomes complicated

due to delivery services from multiple platforms, which will

be considered in our future work.

Ethics and privacy: The order data and couriers’ trajectory

data utilized in this paper are collected due to the operational

characteristics of O2O platforms. For the customer informa-

tion, all the customer IDs have been anonymized by the plat-

form and customers’ exact locations are replaced by coarse-

grained regions with the size of 500 meters by 500 meters. We

utilize the aggregated statistics of customers in each region,

not involving the privacy information of individual customers.

Similarly, store information is pre-processed in the same way.

Couriers’ trajectory data is under the consent agreement of the

couriers, and we do not utilize this information to track the

detailed trace of the couriers but only infer delivery time.

VI. RELATED WORK

A. Store Site Recommendation

Existing works of store site recommendation can be divided

into two categories: (i) small-scale survey-based methods

and (ii) large-scale data driven methods. In the survey-based

methods [10], [11], people carefully design questionnaires and

interviews to obtain feedback from small-scale volunteers.

More recently, with the ubiquitously available infrastruc-

tures such as smartphones, we have a new opportunity to col-

lect large-scale multi-source data such as check-in data, rating

data, and search engine queries. Based on these data, a lot of

works [12]–[17], [19], [32], [33] tend to build feature-based

learning models that explore the features of stores from multi-

source data. Geo-spotting [12] extracts a series of geographic

and mobility features from city data to predict the popularity

of candidate locations. The satellite image is ulitized in [13],

[32] for business location selection. Some works [16], [19]

consider the feedback of customers to recommend store sites.

There are also some works that are different from the

general store site recommendation [15], [17], [34]–[36]. City-

Transfer [17] focus on cross-city chain store location recom-

mendation. Yu et al. [15] aims at recommending the shop

types for a given location. Lian et al. [36] focus on store

survival analysis. The most similar scenario is Deepstore [14]

focusing on predicting the consumption level of different users.

The purpose and considering supply (courier capacity) in our

work make it significantly different.
These studies are mainly designed for offline brick-and-

mortar stores, which are not suitable to solve the problem

under the O2O model due to the significant differences in

both the supply and demand aspects.

B. Graph Neural Networks and Applications in Recommen-
dation Systems

Graph neural network work is generally divided into

two categories, namely spectral-based GNNs [37], [38] and

Spatial-based GNNs [23], [39]. However, the real-world graph

usually comes with multi-types of nodes and edges and

traditional graph neural network cannot be directly applied

to heterogeneous graphs. Many existing works [40], [41] use

meta-path to deal with heterogeneous graphs, which convert

the heterogeneous graphs into homogeneous graphs. Other

works directly deal with heterogeneous graphs without meta-

path [30], [31], [42].
One of the most important applications of graph neural

networks is recommendation systems [43]. The interaction

between users and items is the core information, and they nat-

urally form a user-item bipartite graph [29], [44]. In addition,

the recommendation system adds other auxiliary information

(e.g., social network and knowledge graph) to solve data

sparsity and cold start problem [45]. Some studies [28], [46]–

[48] have added a social network to the user side, which

believes that their friends will influence personal interests.

Other studies [49]–[51] add a knowledge graph to the item

side to reveal the deep relationship between the user and the

item, and also make the recommendation interpretable.
However, graph-based recommendation methods cannot be

directly applied to our scene due to different data character-

istics. Inspired by these methods, we utilize a heterogeneous

multi-graph to model relations among store-region, customer-

region, and store-type. We need to consider the multi-graph

structure and the effect of edge attributes in our work.

VII. CONCLUSION

In this work, we focus on the problem of store site recom-

mendation under the O2O model. We design a store site rec-

ommendation framework via multi-graph attention networks

named O2-SiteRec, which considers the courier capacity,

customer preferences, and context features. The evaluation

results show that O2-SiteRec achieves 12.18% of improvement

in the NDCG@3 metric and 9.01% of improvement in the pre-

cision@3 metric compared to other state-of-the-art methods.
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