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ABSTRACT
Given widely adopted vehicle tracking technologies, usage-based

insurance has been a rising market over the past few years. With

potential discounts from insurance companies, customers voluntar-

ily install sensing devices in their vehicles for insurance companies,

which are utilized to analyze their historical driving patterns to

derive the risks of future driving. However, it is challenging to

characterize and predict driving patterns, especially for new users

with limited data. To address this issue, we propose and evaluate a

system called MoCha to accurately characterize driving patterns for

usage-based insurance. The key question we aim to explore with

MoCha is whether we can fully explore long-term driving patterns

of new users with only limited historical data of themselves by

leveraging abundant data of other users and contextual informa-

tion. To answer this question, we design (i) a multi-level driving

pattern modeling component to capture the spatial-temporal de-

pendency on both individual and group level, and (ii) a multi-task

learning method to utilize underlying relations of driving metrics

and predict multiple driving metrics simultaneously. We implement

and evaluate MoCha with real-world on-board diagnostics data

from a large insurance company with more than 340,000 vehicles.

Further, we validate the usefulness of MoCha by predicting driving

risks based on real-world claim data in a Chinese city, Shenzhen.

CCS CONCEPTS
•Human-centered computing→ Ubiquitous and mobile comput-
ing; • Social and professional topics → User characteristics; •

Information systems → Information systems applications.
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1 INTRODUCTION
Usage-Based Insurance (UBI) started in 2003 and has now become

mainstream offered by most insurance companies especially across

North America, Europe, and Asia [23]. Currently, several U.S. insur-

ance companies offer usage-based insurance such as Progressive,

StateFarm, Metromile, and Allstate. In general, these companies

provide UBI based on users’ potential driving risk, which is mod-

eled by many factors including distance, speed, time, and detailed

contexts (e.g., traffic congestion) [22]. With UBI, an auto insurance

company tracks how users use their vehicles under users’ consent

and then quantifies the risks of their future driving [22].

There are a few approaches to implement UBI based on Black-Box

devices [16], OBD-II devices with Smartphone apps [8], and a hybrid

approach of them [9]. All these approaches log speeds, locations,

or both, when a vehicle is driven and uploads these data through

a smartphone app, which makes these data user-specific. Based

on this logged information, insurance companies analyze driving

patterns in terms of three key metrics, i.e., distance, time, and

speed [21]. Previous studies [22] [26]show that these three vehicle

usage metrics are the main factors to quantify potential future risks

through the multi-factor fitting, along with other metrics, e.g., car

and road condition, traffic density, user experience. We verified this

assumption in our motivation section. Thus, how to predict future

driving metrics (e.g., distance, time, and speed) and resultant risks

based on historical data is essential for UBI.

Currently, based on the interactions with a major insurance com-

pany from which we obtain user-specific On-Board Diagnostics

(OBD) data (uploaded by smartphone apps), the driving pattern

analysis they are using is mostly statistical on the individual user

level, which works fine for users with sufficient data and stable

driving patterns. However, there are two kinds of users introducing

significant challenges for a UBI company to continuously charac-

terize their mobility patterns by three driving metrics (i.e., distance,

time, and speed): (i) newly insured users with limited historical
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data (e.g., transferred from another company); (ii) some existing

users with evolving driving behaviors (e.g., new job, new home,

new grocer, new school for kids).

To address this challenge, we explore two fundamental aspects

of vehicular mobility. (1) It has been shown that the role of a user

(e.g., daily commuters, Uber drivers) has an important impact on

mobility patterns [25][14], which inspires us to group users by so-

phisticated mobility features (e.g., home, work, frequent routes, etc)

to compensate for newly insured users with limited data or existing

established users with bias historical patterns due to new driving

behaviors. Due to the dynamic roles of drivers and evolving driving

patterns, we periodically update our user groups with update-to-

date features to compensate for new driving behaviors. Techni-

cally, we design a multi-modal learning component to capture the

driving pattern based on individual user level (one modal) and
user group level (the other modal) features. (2) The key driving

metrics including distance, time, and speed variance are highly

correlated with each other, so prediction results of one metric can

improve the prediction results of others. It motivates us to design a

multi-task learning component to predict the three target metrics

simultaneously where the prediction of each metric is a task.

Based on these two components, we design and test a system

called MoCha for Mobility Characterization. The key novelty of

MoCha is to jointly consider (1) individual-level and dynamic group-

level mobility with multi-modal learning; (2) correlation of driving

metrics with multi-task learning to accurately predict three driving

metrics (i.e., distance, time and speed variance) and driving risks

for both new UBI users with limited data and established UBI users

with involving mobility patterns, in contrast to existing methods for

UBI mostly, if not all, focusing statistical methods with individual

or static user groups. Our key contributions are as follows:

• To our knowledge, we design and test MoCha as the first sys-

tem of large-scale driving pattern prediction for usage-based

insurance. MoCha considers both (i) correlation between differ-

ent UBI users for driving pattern grouping and (ii) correlation

between different driving metrics to address two practical chal-

lenges regarding new users with limited data and established

users with evolving patterns. The design insight of MoCha is

based on real-world vehicular data with more than 340 thousand

vehicles. Under the permission of the UBI company, we will share

sample data of 1,000 anonymous vehicles for reproducibility to

encourage researchers to work in this direction.

• We design a multi-modal learning component to integrate indi-

vidual driving patterns with group driving patterns, where each

of them serves as a concrete modality to improve each other.

Specifically, we periodically cluster users into groups based on

seven mobility features regarding essential mobility patterns in-

cluding home/work locations, driving time/distance, etc. We treat

individual driving patterns and group driving patterns as two

separate modalities and integrate them with a multi-modal LSTM

model. Further, we found the driving metrics to be predicted (i.e.,

distance, time, and speed variance) are highly correlated since

they share spatial and temporal contextual factors such as trav-

eled road types. It motivates us to design a multitask learning

component to learn these metrics simultaneously to improve

their prediction accuracy. We implement and evaluate MoCha

with On-Board Diagnostics data from a national-scale insurance

company with 340 thousand personal and commercial vehicles.

• More importantly, we deploy MoCha and validate its usefulness

by predicting driving risks through predicted metrics based on

real-world claim data as the ground truth. We found that the

future driving metrics predicted by MoCha can be utilized by

two learning models to predict their accident risks with an error

rate of 25%.

2 MOTIVATIONS
2.1 Prediction Justification
Some insurance companies (including the one we are working with)

provide a dynamic rate for users with a combination of driving

distance and driving risk. The insurance rate consists of two parts,

i.e., the base rate and per-mile rate, as shown in Figure 1.

Fig. 1: UBI (metromile.com); the base rate and per-mile
rate are determined by the potential future risk quantified
by future predicted metrics.

At the beginning of every month, insurance companies offer

users the rates of the upcoming month. The base rate and per-mile

rate are two dynamic values and determined by the potential risk

of a user, which is quantified through multi-metric analyses. The

dynamic metrics include travel distance [11], travel time [22] [5],

speed variance [24] [22], and static metrics such as gender, coverage,

years of driving and previous claims [11], e.g., exceed speed limits,

traffic signal violation, traffic accidents. At the end of each month,

the total premium is calculated by the summation of two rates with

a formula base rate (quantified by predicted driving behaviors) + per
mile rate (quantified by predicted driving behaviors) × driving miles.
Therefore, the total premium needs the prediction on future driving

behaviors to determine the rates at the beginning of the month,

even though it is paid by the end of the month based on the actual

mileage.

2.2 Metric Justification
Based on the current practice of the UBI insurance we are work-

ing with, we explore a set of dynamic metrics as factors related

to driving risk by utilizing real-world claim data and OBD data.

We found various metrics captured by OBD data are correlated

to driving risks. However, some detailed metrics, e.g., home/work

locations, trip origin and destination, and travel time, are potential

privacy issues since their information was not included in the UBI

agreement. So we utilize these features as features to predict the
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three metrics in almost all UBI agreements without privacy issues.

Based on our dataset, as shown in Figure 2, we found that users

with accidents have longer distances and time, along with higher

standard deviations on speed, i.e., higher variance.

Fig. 2: Normal users w/o Acc. v.s. users w/ Acc.

2.3 Technical Challenges
New UBI Users with Limited Data: In the business of insurance

companies, there are lots of incoming users with limited data. They

are (i) experienced drivers starting to use UBI, (ii) new drivers get-

ting their first cars, and (iii) a company with existing commercial

vehicles switching to a new insurance model. Based on our analy-

sis, we have around 0.1% - 0.5% new users without historical data

coming into the systems every day, which makes their driving pat-

tern prediction challenging. Based on interactions with our UBI

collaborator, the company has to delay the intensive evaluation

of a new customer until enough data are collected, which would

potentially increase both the premiums for users and the risk of the

UBI company. To provide some quantitative results, we study both

new UBI users (i.e., the users with fewer than one-week data, which

is suggested according to the domain experts from insurance com-

panies and the fact that human mobility presents repeated weekly

patterns [6]) and established users (i.e., the users with more than

one-week data), for both personal and commercial vehicles. Given

new UBI users, a naive method to predict their mobility patterns is

to use the average value of existing observations from other users

within the same category, but it leads to large prediction errors.

As in Figure 3, we compare the predictability of two groups by

calculating the standard deviation (STD) of travel distance, travel

time, and travel speed in trips on the individual level. The formula

for STD is given by 𝑆𝑇𝐷 (𝑋 ) =
√∑𝑁

𝑖=1
(𝑥𝑖 − 𝑥)2/(𝑁 − 1) where 𝑋

is a collection of user data of a specific driving metric, such as

travel distance, travel time, or travel speed. We use STD instead

of Mean because we try to understand the variance of new users’

driving behaviors since the variances are tied to the predictability

of driving patterns. New users present lower predictability (larger

STD) compared with existing users, which is caused by a limited

sample size, e.g., the number of historical records.

Fig. 3: STD of Three Driving Metrics
EstablishedUserswithEvolvingPattern:With data collected

by OBD, the current solution of our collaborator is straightforward,

i.e., to use historical vehicle usage directly obtained by OBD data

as future vehicle usage. However, based on our analyses, we found

that users’ driving patterns have been evolving a lot given more

collected data, and the existing solution has a large prediction er-

ror due to lower predictability (higher STD) in this group of users

compared with routine users without much evolving on driving

patterns as in Figure 4. This phenomenon is mainly caused by (i)

new infrastructure (e.g., new roads, new shopping mall, long-term

constructions such as new subway lines), (ii) new personal routines

(e.g., moving to new apartments, picking up and dropping off kids

to new schools), (iii) new business routines (e.g., new delivery areas

for logistic trucks). The OBD data are uploaded in real-time based

on a smartphone app and tied to individual users and vehicles. The

details of the collected OBD data are given in Section 3. As a result,

our collaborator plans to predict future driving patterns of both

existing and new customers by building customer-specific models

given limited yet constantly-accumulated OBD data.

Fig. 4: Established Users with Evolving Patterns

3 DATASET AND PREPROCESSING
The details of 5-year the OBD system data are listed in Figure 5,

where the direction field is given between 0 to 360 degrees to north.

Fig. 5: Datasets
These two types of vehicles are spatiotemporally complementary

to each other due to their purposes. Since we focus on an evolving

scenario, we present the driving pattern evolving of UBI vehicles in

Table 1. The average travel speed, travel distance, and travel time

have been increasing in the recent 4 years starting 2017.

Table 1: 4-Year Evolving Pattern

Year First Year Second Year Third Year Forth Year

Ratio of New Vehicles 10.1 % 36.5% 47.3% 55.1%

Daily Distance (km) 30.43 33.02 35.20 36.81

Daily Time (h) 1.25 1.28 1.33 1.34

Average Speed (km/h) 22.02 23.77 24.74 25.81

Spatial Partition: To reduce the computational cost and improve

prediction accuracy, we divide a geographic area into prefixed

grids. A grid partition is given by (i) the maximum and minimum

coordinates of the area; (ii) the length of each grid; (iii) individual

grids with their coordinates. Based on the grid partition, a trajectory

is modeled as continuous changes of grids on the spatial dimension.

Temporal Partition: Based on the previous study [6], human mo-

bility shows a regular pattern given temporal contexts due to the

periodicity of trips. Thus, we utilize a temporal partition including

Time of Day (ToD) and Day of Week (DoW). ToD is indicated by

different time slots within a day, e.g., a 10 min or one hour slot;
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DoW is indicated byWeekdays andWeekends or Monday to Sunday
because of different patterns in these two categories.

Trajectory vs. Trips: Based on the spatial and temporal partition

settings, a vehicular trajectory captured by OBD devices is defined

as a sequence of spatial-temporal changes, i.e.,

traj.trace = {𝑔1, 𝑔2, · · · , 𝑔𝑛}; traj.time = {𝑡1, 𝑡2, · · · , 𝑡𝑛},

where 𝑔𝑖 is a spatiotemporal record at timestamp 𝑡𝑖 . In our system

setting where onboard devices periodically collect GPS data, a tra-

jectory is represented as continuous spatial changes after cleaning.

Based on the above spatial-temporal partition, we divide a continu-

ous physical trajectory of a user into several logical trips based on

a temporal interval between OBD data. In OBD data uploading, the

temporal interval is fixed at 10 seconds as long as the engine of a

vehicle is on. We define a trip as a set of records from an engine-on

and engine-off event.

4 MOCHA DESIGN
4.1 System Overview

We present an overview ofMocha in Figure 6 with three modules:

(i) an internal information feeder to feed mobility data of individ-

ual users and user groups introduced in Sec. 4.2; (ii) an external
information feeder to align contextual factors such as population

distribution and road type distribution with users’ mobility data

introduced in Sec. 4.3; (iii) a multi-modal multitask learning module
to predict future usage based on both internal mobility and external

factors in Sec. 4.4.

Fig. 6: Mobility Prediction Framework

4.2 Internal Information Feeder
The internal information feeder constructs two kinds of tensors,

i.e., individual tensors and group tensors as output, and then feeds

the tensor attributes to the learning module. An individual tensor

describes attributes of single users and a group tensor describes

attributes of a user group. The attributes in tensors are categorized

into two types: (1) The static attributes are metrics describing gen-

eral information, e.g., start location of one day, day of the week, etc.

(2) The time series attributes are dynamic metrics used to describe

detailed driving patterns, e.g., distance, travel time, speed variance.

4.2.1 Individual Tensors. We organize trips belonging to the same

user (uploaded by the same smartphone) with a fewmobility tensors

A ∈ R𝑁×𝑁×𝑀
with the same dimensions.

• A temporal dimension indicates a specific time of day on a

day of week when a trip starts (e.g., a slot from 0:00 AM to

0:05 AM on Monday): [𝑡1, ..., 𝑡𝑀 ].
• A spatial dimension indicates specific spatial units as the

origins of trips: [𝑔1, ..., 𝑔𝑁 ].
• A spatial dimension indicates specific spatial units as the

destinations of trips: [𝑔1, ..., 𝑔𝑁 ].
For a vehicle, we use 5 datasets related to a trip with a fixed start

time, origin, and destination to obtain five tensors: (1) Frequency:

an entry is the frequency of a trip; (2) an entry is the average trip

distance; (3) Duration: an entry is the average trip time; (4) Speed: an

entry is the speed variance of a trip; (5) Route: an entry is a detailed

trajectory on a grid level, which is represented by an additional

matrix with features related to road types and population density

related to a route.Without loss of generality, current driving pattern

modeling focuses on factors including driving distance, time, and

speed. Other factors such as acceleration (e.g., braking) and turning

can be embedded in our model through tensor extension. The left

part of Figure 7 gives an example of the individual mobility tensors.

Fig. 7: Tensor Construction
4.2.2 Group Tensors. We utilize the individual mobility tensors

(e.g., frequency, distance, time, speed, and route tensors) to repre-

sent the driving patterns of individual users. However, individual

tensors limit the ability of our model to capture new mobility pat-

terns because of new users with limited data. If we combine indi-

vidual tensors, we have global tensors showing the driving patterns

in the same city. Global tensors contain overall driving patterns,

giving the ability to capture driving patterns for new users with

limited data. But the key drawback of a city-wide global tensor is

too generic due to a large number of users.

As a result, we aim to find some group tensors, which contain

mobility patterns in a group of users with similar mobility patterns.

Based on individual tensors, the users in the same group have very

similar mobility patterns; whereas the users in different groups have

very different mobility patterns. Therefore, we design a clustering

algorithm to group users into different groups. For clustering, a

feature vector is created for all groups and is dynamically updated

when new OBD data are fed into the system. A vehicle’s feature

vector contains a set of advanced features, which are obtained by

direct tensor operations, e.g, projection, and aggregation.We cluster

the vehicles into different groups by three steps.

Step (i): Creating a Feature Vector for Each User. Based on

the individualmobility tensors, the feature vectorwe used inMoCha

is given in Table 2, in which (1) the home grid and work grid are in-

ferred from spatial-temporal features of individual tensors based on

existing work [10] (for commercial vehicles, instead of home/work

locations, we use the top two frequent locations); (2) the average
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daily driving time, average daily driving distance, and average

standard deviation of daily speeds are daily mobility patterns on

weekdays and weekends; (3) the number of daily distinct ODs is

the distinct origin-destination pairs a user traveled in one day at

the grid level on weekdays and weekends; (4) we use the number of

daily trips on different days of the week as a weekly travel pattern.

These features capture a permanent geometric distribution of a user

during a long time period, which enables an effective clustering.

Table 2: User Features
Features Values
Home Grid 𝑔𝑖

Work Grid 𝑔𝑗

Daily Driving Time 𝑡1,𝑡2

Daily Driving Distance 𝑑1,𝑑2

Daily Speed STD 𝑠1, 𝑠2

# of Daily Distinct OD 𝑛𝑜𝑑
1

,𝑛𝑜𝑑
2

# of Daily Trips in DoW 𝑛1,..,𝑛7

Step (ii): Clustering Users into Groups based on Feature
Vectors. Based on feature vectors, we cluster users into groups by

a Gaussian Mixture Model (GMM) [2] as in Equation 1.

𝑝 (𝑥) =
𝐾∑
𝑘=1

𝜋𝑘N(𝑥 |𝜇𝑘 , Σ𝑘 ) (1)

where 𝑥 is a feature vector in our model, N is a Gaussian distribu-

tion with 𝜇𝑘 as the mean and Σ𝑘 as the covariance matrix. We apply

a standard Expect Maximization algorithm to maximize the likeli-

hood iteratively. The output of the clustering gives the centroid 𝜇 of

each cluster and the corresponding probability of x being in a clus-

ter. We apply a Gaussian-based clustering method since Gaussian

distributions are fit into mobility metrics in many scenarios [3].

Step (iii): PeriodicallyOptimizingClusters based onDavies-
Bouldin Index.We use Davies-Bouldin index to tune the optimum

number of user groups. Davies-Bouldin index measures both the

separation of clusters and cohesion within clusters, which math-

ematically guarantees good clustering results. We found the opti-

mum number of clusters is 135. The results are corresponding to 27

major pairs of home-work areas and 5 real-world driving groups,

i.e., daily commuters, weekend users, weekday commuters, for-hire

vehicle users, and others. Since users’ behavior and roles change

over time, e.g., a daily commuter can change to a Uber user, we

apply the clustering method periodically to update the users’ group

information dynamically based on their most recent driving data.

The right part of Figure 7 gives an example of group tensors.

With group tensors, we use the mobility patterns from similar users

to predict future usage for existing users with limited data.

4.3 External Information Feeder
The external information feeder collects external information on

trips, e.g., road networks and population density, as external fea-

tures and then are fed to the learning component. External fea-

tures include road type distribution and population distribution.

We study road types and population density as external features

since they have a significant influence on driving patterns based

on our analysis in the following analysis. We incorporate these

external features in our system given how often a user travels on a

route with different road types and population density.

(a) RoadTypes:We divide all roads into 5major types (i.e., highway,

road, link road, path, and special road) based on road types provided

by OpenStreetMap road networks [1]. First, we run map matching

on personal and commercial vehicle datasets. Then, we calculate the

average speed and driving distance on-road segments. We found a

significant difference in the speed and distance distribution among

different road types, which is considered as a context in our model.

We omit the results due to space limitation.

(b) Population Density: We further investigate the impact of pop-

ulation density distribution on driving behaviors by calculating

the correlation between speed and population in grids based on

Worldpop dataset [7], which includes population distribution at

night. We aggregate the average speed from 4 pm to 11 pm in grid

partition to study the correlation. We found that over 80% grids

show a negative correlation between population and speed, which

motivates us to consider population density in our model.

4.4 Multi-Modal Multitask Learning
With both internal information and external information, we adopt

a multi-modal LSTM (Long-Short-Term-Memory) in the recurrent

neural network layer. This is because (i) both of the input and

output of our usage can be seen as time-series data; (ii) LSTM is one

of the most effective models to deal with time-series data prediction

and is insensitive to temporal gaps[12]. We did not choose a more

complicated model due to a practical deployment.

Multi-modal LSTM: A multi-modal Long Short Term Memory

LSTM is designed to integrate multiple data sources with different

weights [13] due to its insensitivity to temporal gaps. The previous

work [15] has shown that the multi-modal LSTM model outper-

forms other models in time series prediction problems. The memory

cell unit of Multi-modal LSTM is shown in Figure 8. The model can

be described by Equations in Figure 8 where 𝑘 indicates the modal-

ity (e.g., individual tensors and group tensors as twomodalities) and

|𝐾 | = 2 is the total number of modalities. Instead of merging hetero-

geneous data in the preprocessing step, a multimodal model shares

weights across different types of modalities during the forward

pass in the training process but does not share memory units [13].

𝑊𝑔ℎ ,𝑊𝑖ℎ ,𝑊𝑓 ℎ , and𝑊𝑜ℎ are hidden layers’ weights in the forward

pass, which gives the features of sharing weights across modalities.

The weights are initialized as random and are updated during the

training. Instead, every modality keeps the memory unit ℎ𝑘𝑡1
in the

forward pass. Therefore, it has some features to share weights but

not memory units in the forward pass. In this work, as shown in the

Fig. 8: Multi-modal LSTM Memory Cell
model overview of Figure 6, individual tensors and group tensors
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are fed to two separate LSTM modules since we treat the individual

tensors and group tensors as different modalities. Motivated by this

idea, we integrate the individual mobility patterns with its corre-

sponding group mobility patterns, but we keep the memory cell of

individual mobility and group mobility. We separate the training

data transferred from the internal information feeder into two cate-

gories of features, i.e., static features and usage features. Relying on

external information, we extract contextual features, such as road

type distribution and population density distribution. Finally, we

feed usage features, static features, and contextual features in the

learning component. The rest of the process is standardized after

we format the problem this way, and the details of LSTM can be

found at [12].

Input and Output:Given𝑚 days of previous usage data of vehi-

cle 𝑖 , i.e., travel distance, travel time, and speed STD, along with ex-

ternal contextual information, our target is to predict 𝑖’s usage over

next n days, the output is denoted as Ŷ𝑖 = (Ŷ 𝑖
𝜏+1

, Ŷ 𝑖
𝜏+2

, · · · , Ŷ 𝑖𝜏+𝑛)
where Ŷ 𝑖𝜏 = ( ˆd𝑖𝜏 , t̂

𝑖
𝜏 , v̂

𝑖
𝜏 ), 𝜏 is the current day; d𝑖𝑗 , t

i
j , s

i
j is the daily

distance, daily travel time and daily speed standard deviation to

present the variance of the speed for vehicle 𝑖 at day 𝜏 . In our design

we make a daily prediction for fine-grained insurance policies. It is

straightforward to obtain a 𝑛 day distribution with our model with

an adaptive method.

Loss Function: Since the dependency existing in the three pre-

dicted metrics, we apply a multi-task learning component with

a loss function of the average of the three metrics to show the

performance. We use MAPE which takes the average absolute er-

ror between the estimated value 𝑝 and ground truth 𝑝 . 𝜖 (𝑝) =

100

𝑛

∑𝑛
𝑖=1

|𝑝𝑖−𝑝𝑖 |
𝑝𝑖

. For each user, the travel distance, travel time and

speed variance are closed correlated since all of them are derived

from trips of users. Therefore, we apply a multitask learning model

in the prediction to capture the underlying correlation among them.

A joint loss function is normally defined in multitask learning mod-

els [28]. We define a joint loss function as the weighted MAPE of

the three metrics in Equation 2, where d is the daily travel distance,

t is the daily travel time, and v is the daily travel speed STD.

L = 𝛼 · 𝜖 (𝑑) + 𝛽 · 𝜖 (𝑡) + 𝛾 · 𝜖 (𝑣)
𝑠 .𝑡 . 𝛼 + 𝛽 + 𝛾 = 1

(2)

We tune 𝛼 , 𝛽 and𝛾 in our training process to achieve the best overall

performance. The joint loss function is commonly used in multi-

task learning since training of one feature can benefit the learning

of other two metrics and prevent overfitting in a single metrics

learning [19]. To justify our design choice, we compare MoCha

with a single task learning model where separate loss functions are

defined for each metrics in our evaluation of Section 5.

5 EVALUATION
5.1 Methodology
(i) Setting:Weutilize two kinds of vehicle data as shown in Figure 5,

which contains nationwide long-term personal and commercial

vehicle OBD data for the evaluation. The personal vehicle dataset

has OBD data from 295 thousand vehicles; the commercial vehicle

dataset has OBD data from 60 thousand vehicles. Both commercial

data and personal data contain the exact time, location, and speed

of the vehicles and an uploading device ID to identify each user.

We train our model with 10-fold cross-validation (i.e.,90% days of

data for training and 10% of days of data for testing) with both

internal features and external features. We perform temporal cross-

validation to gradually increase the number of continuous days as

training data. The details are given in the evaluation results.

(ii) Metrics: We compare our predicted results 𝑝 with real metrics

𝑝 in terms of travel distance, time, and speed variance by Mean

Absolute Percent Error (MAPE).

(iii) Baseline Approaches:
• ARIMA: An AutoRegressive Integrated Moving Average (ARIMA)

auto-regression model is proposed in [18] to predict human be-

haviors with a set of auto-regression models.

• DeepTransport (DT): DeepTransport [17] is a state-of-art model

to predict human mobility. It applies recurrent neural networks

to predict human trajectories and travel time on the individual

level. We adopt the model for distance, travel time, and speed

STD prediction. In particular, we apply DT model on historical

records and incorporate external information in the model.

• MoCha-: We implement multitask learning with a joint loss func-

tion to learn the underlying correlations among driving metrics

and prevent overfitting in a single task learning model. In con-

tract, we use a single task learning model with three individual

loss functions to predict specific metrics, i.e., we drop multi-task

learning from MoCha in this baseline model.

(v) Impacts of Factors:We evaluate four factors and their impacts

on our system. (a) New Users vs Established Users: We separate

prediction results into two groups. The first group is new users with

historical records less than one week, i.e., belonging to evolving

patterns. For all incoming UBI users, we use their first one-week

data to predict their future metrics. After more data was collected

about these users, they became established users. The prediction

accuracy is compared in these two groups to show the ability of the

model to capture patterns of new users. (b) Impact of Training Data

Length: (c) Impact of Predicted Period: We use an adaptive way to

predict future user metrics and evaluate the performance in a varied

number of predicted days. (d) Impact of External Information.

(vi) Implementation: Our model and baseline models are imple-

mented with Keras and Tensorflow libraries. We train and evaluate

our work on 8 Nvidia K40C GPU servers. We set the learning rate

as 0.001 and train the model with 100 epoch with cross-validations.

We train our model with a previous one-week driving pattern as

inputs and predict future daily metrics. We apply an adaptive learn-

ing method to predict long-term driving patterns, i.e., we use the

predicted values as input to predict the further three metrics.

5.2 Evaluation Results
(i) Established Users vs. New Users: As the number of users in

UBI is increasing, one of the most important challenges for insur-

ance companies is usage prediction for new users. Therefore, before

giving the general performance, we evaluate our models on the

new users and established users. We report the overall performance,

which is the average prediction error of travel distance, travel time,

and travel speed STD in Figure 9. Our model shows the best per-

formance compared with baselines, especially for new users. In

particular, for new users, MoCha outperforms the existing model
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ARIMA and DT by around 25.4 % by reducing the average MAPE

from 30% to 22.6%. In detail, MoCha reduces MAPE of distance

prediction from 26.1% to 18.8%, travel time prediction from 36.4% to

25.2%, and speed variance from 32.3% to 23.8%. Moreover, the period

to update user groups is critical for the prediction for new users

and evolving users. In the evaluation, we found we can reduce the

prediction error by 12.4% by updating user groups daily compared

with one-time clustering for new and evolving users.

(a) Exist Users (b) New Users

Fig. 9: Overall Performance

(ii) Travel Distance Prediction: We evaluate the prediction ac-

curacy of the three investigated metrics, i.e., travel distance, travel

time, and speed STD. First, we evaluate MoCha on distance predic-

tion in Figure 10. MoCha presents a better and more stable perfor-

mance compared with baselines in both personal and commercial

vehicles. We found a higher performance gain in personal vehicles

when comparing LSTM-based models (MoCha, DT, MoCha-) with

ARIMA. One possible reason is that driving patterns of personal

vehicles are more relevant to recent mobility since LSTM assigns a

higher weight to short-term memories.

(a) Personal Vehicles (b) Commercial Vehicles

Fig. 10: Travel Distance
(iii) Travel Time Prediction: Compared with predicting travel

distance, predicting travel time is more challenging since it is af-

fected by external factors such as road traffic and travel start time

while daily travel distance is mostly determined by OD (origin and

destination) pairs and travel routes. As a result, we found a higher

MAPE in Figure 11 compared with the travel distance prediction.

We found a lower MAPE in MoCha, DT, and MoCha- compared

with ARIMA in both users of personal vehicles and commercial

vehicles. MoCha has the best performance, contributed by the pre-

diction improvement on new drivers, and integration of external

features. Besides, MoCha achieves a lower performance variance in

personal vehicle users. Based on the historical data, we found over

30% of commercial vehicle users operate more than 20 hours per

day. It may because some commercial vehicles are shared by more

than one user in a rotation to maximize profits. In contrast, since

personal vehicles have constant mobility patterns and fewer origins

or destinations than commercial vehicles, personal vehicle users

have a small variance on the performance compared with com-

mercial vehicle users. We found the multitask learning component

(MoCha-) and the multimodal training component (DT) have larger

impacts on personal vehicle users. The possible reason is personal

vehicle users have more constant mobility patterns. As a result, it

is easier for MoCha to find similar drivers, prevent overfitting, and

learn underlying correlations among metrics.

(a) Personal Vehicles (b) Commercial Vehicles

Fig. 11: Travel Time
(iv) Speed STD Prediction: Different from travel time and dis-

tance, speed is an instant value. We compare the estimated speed

STD with the speed STD calculated based on the raw data from the

OBD reader to evaluate the prediction performance. We found a dif-

ferent prediction performance during days of one week in Figure 12.

Similar to travel distance and travel time prediction, MoCha- has a

better performance than DT. In all four models, personal vehicles

show a higher prediction error on weekends while commercial

shows a lower error. The reason is that personal vehicle users have

regular mobility patterns during weekdays and more random pat-

terns on weekends. For commercial vehicle users, mobility patterns

are not affected significantly by weekday patterns. On weekends,

better traffic conditions lead to lower randomness on speeds.

(a) Personal Vehicles (b) Commercial Vehicles

Fig. 12: Speed Variance
(v) Impact of Training Data Volume: We further study the im-

pact of training data on the performance. We apply an N + 1 vali-

dation and evaluate the model by average MAPE of three predicted

features. In the N + 1 validation, N continuous days of data are

trained and 1 following day is tested. We evaluate N from 1 to 28 on

both personal and commercial vehicle users. We fill null values for

missing features. We study the impact of training data on overall

performance in Figure 13. MoCha has the best performance in the

average prediction errors. The elbows of the performance changes

locate at around 14 days since it covered the day-of-week pattern.

Fig. 13: Training Data Fig. 14: Predicted Period
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(v) Impact of Predicted Period: Since long-term driving pattern

characterization is of great importance to quantify individual driv-

ing risks, we apply an adaptive method to predict individual driving

patterns. Specifically, to predict daily driving distance, travel time,

and speed variance in weeks or months, we use the predicted values

as the input for new prediction. We predict different days of metrics

ranging from one day to one month. We found the overall perfor-

mance drops as the number of predicted days increases in Figure 14.

This is caused by the accumulation of error in the prediction since

we use the predicted data as the input of users.

(vii) Impact of External Features: We compare the impact of

external information with hypothesis tests. We found (i) road in-

formation improves the average model performance by reducing

MAPE from 18.93% to 17.86% for personal vehicle users and 25.88%

to 24.67% for commercial vehicle users; (ii) Worldpop [7] population

improves the average performance by reducing MAPE from 17.86%

to 17.42% in personal vehicles and 24.67% to 24.05% for commercial

vehicles. We omit the detailed results due to space limitations.

6 DEPLOYMENT: RISK PREDICTION
The insurance company we are working with is interested to know

if our driving metric prediction has impacts on future driving risk

prediction of drivers. It is straightforward to quantify driving risks

by the probability of accidents happened to a user based on insur-

ance claim data. We deploy our system for a pilot study to conduct

a case study on 196 UBI users’ claim data to predict their proba-

bility of accidents. As incentives, these users received additional

discounts for further analyses so they consent their claim data shar-

ing. We incorporate the results of MoCha in the prediction task to

study how MoCha contributes to this real-world application.

Claim Data for Validation: We have access to claim data of

196 drivers from Shenzhen and their detailed OBD traces records for

one year as ground truth for validation. The dataset contains four

types of accidents based on their causalities, i.e., collision, wading,
collapse, and others. According to claims, 93.14% of accidents are

caused by collisions, 4.90% of accidents are caused by wading, 0.98%

of accidents are collapse, which is caused by falling objects and

0.98% accidents are caused by other reasons.

Setup:We build two versions of a learning model X with (1) a

logistic regression (i.e., X=LR), and (2) a neural network (i.e., X=NN)

with sigmoid activation functions, to study how MoCha helps im-

prove risk prediction in the two models. The input is the three

metrics of a user (e.g., historical average or future prediction based

on MoCha) with static factors such as gender and age along with if

he/she has accidents before. The output is a value between 0 and 1,

i.e., a higher value means a higher potential risk of the user.Metrics:
Both loss function and evaluation metrics are defined by Mean Ab-

solute Error (MAE)

∑𝑛
𝑖=1

|𝑝𝑖−𝑝𝑖 |
𝑛 between real risk 𝑝𝑖 as ground truth

(i.e., 0 without accident or 1 with accident obtained by ground truth)

and predicted risk 𝑝𝑖 . We define theMoCha based method asMoCha
+ X and compare its performance with two baselines: Hist+X and

DT+X. All MoCha and baselines use the same learning model X to

learn the relationship between drivers’ behavioral factors to their

potential risk, but their behavioral inputs are different. (i) Hist + X :
It uses the historical average of distance, time, and speed variance

as the input without prediction; (ii) DT + X and (iii) MoCha + X :

We use 𝐷𝑇 [17] and MoCha to predict the future driving distance,

time, and speed variance as input for X, respectively.

(a) X = LR (b) X = NN

Fig. 15: Quantifying Future Driving Risk

Evaluation: Figure 15 shows the prediction ofMoCha improves

the performance in quantifying future risks of drivers in both LR

and NN. The X-axis is the𝑀𝑅𝐸 and Y-axis is the length of the future

days. As shown in Figure 15a,MoCha improves the performance by

reducing the error from 38% to 29% in the logistic regression model.

In Figure 15b, MoCha improves the performance by reducing the

error from 36% to 26% in the neural network model. We found both

prediction based methods have better performance than historical

data based method Hist+. The reason is that historical data are

biased when used to describe future driving patterns.

7 LESSONS LEARNED AND DISCUSSION
Key Lesson Learned: The most fundamental lesson learned in this

we can predict mobility metrics for new UBI users with limited data

and existing users with new patterns with high accuracy due to

accurate driver group clustering design. The key insight is that the

similarity between new users and existing users can be found by

carefully designing a mobility feature set to quantify their similarity

by periodically clustering. However, using group driving patterns

alone cannot achieve the best performance due to overfitting, so we

need to consider both the individual-level driving pattern and group

driving pattern as two modalities and integrate them in a multi-

modal learning model where these two modals interact with each

other to improve the prediction accuracy. This insight provided

some guidance on the cold start and user pattern evolving problem

for current or future UBI companies.

Deployment Obstacles: Based on our result, the key obstacle for a

large-scale deployment is that for the brand new users without any

historical data, MoCha has the limited ability to predict their future

mobility patterns. In general, their premium plan is determined

based on their demographic information, e.g., gender and age, at the

beginning of using UBI insurance. It makes challenging to convince

the UBI company for a full-scale deployment. Our next step would

be collecting enough historical data for the brand new users and

then adjusting their premium according to the prediction of MoCha.

Privacy Protections andConsent:Whilemodeling and predicting

vehicle usage is important for insurance companies and we have

UBI users’ consent, we protected the privacy of involved users

by using the aggregated metrics to model the driving patterns in

MoCha. Therefore, we minimize the exposure risk for individual

locations collected by the on-board GPS devices.

8 RELATEDWORK
We study related work via two features, i.e., spatial scale and vehicle

modality.

8

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2856



Aggregate Mobility vs. Individual MobilityWe divide existing

works on vehicle mobility into two categories based on the mobility

level: (i) On the Aggregate Level, vehicle mobility is estimated

by aggregating historical records without considering individual

behaviors. Zhou et al. compare the speed estimation from either

explicit or implicit sensing data [? ]. Further, a fewmodel calibration

techniques have also been proposed to model travel speeds, e.g.,

offline calibrating based on sensitivity analyses [4]. (ii) On the

individual level, personal behaviors and mobility patterns are taken

into account for mobility modeling. Fang et al. propose a system
called Mac to infer fine-grained travel time [5]. Song et al. propose a
multi-task learning model based on historical trajectories to predict

individual mobility such as transportation mode [17].

Single vs. Multiple Vehicle Fleets Due to the separation and

isolation among vehicular fleets and transportation systems, most

existing works have been focused on mobility on a single fleet

such as taxi travel time estimation in Beijing [20]. Those works

are well-designed for a single-vehicle fleet for vehicle mobility.

However, due to the diversity of driving patterns in different fleets,

the generalizability of such modes is not tested on other vehicular

fleets. A few works were conducted on nationwide data for vehicle

mobility. For instance, Zhang et al. propose a model to estimate the

traffic volumes on major highways of China [27], but did not focus

on predicting mobility behaviors.

Summary Technically, MoCha is different from the above works

from two perspectives. (i) We focus on evolving issues in a UBI

setting where new UBI users with limited data and established

UBI users with long-term records, i.e., three years; whereas the

existing works are mostly based on short-term data, e.g., a few

days or months. (ii) we focus on modeling and prediction on multi-

modality vehicle patterns, e.g., both commercial and personal vehi-

cles; whereas the existing work is mostly focused on one modality.

9 CONCLUSIONS
In this work, we design, implement and evaluate a driving pattern

characterization system called MoCha which models and predicts

individual vehicle usage in the setting of usage-based insurance.

We study driving patterns on three metrics, i.e., travel distance,

travel time, speed variance. To solve the problem of data limitation

of new drivers, we cluster existing drivers into groups based on

their similarity of mobility patterns, and then combine individual

driving patternswith group driving patterns based on amulti-modal

multitask LSTM model. Our evaluation results show both good

prediction results on driving behavior metrics and effectiveness on

driving risk prediction based on real-world GPS and claim data.
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