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Abstract
We report a 3-year city-wide study of an operational indoor
sensing system based on Bluetooth Low Energy (BLE) called
aBeacon (short for alibaba Beacon). aBeacon is pilot-studied,
A/B tested, deployed, and operated in Shanghai, China to infer
the indoor status of Alibaba couriers, e.g., arrival and depar-
ture at the merchants participating in the Alibaba Local Ser-
vices platform. In its full operation stage (2018/01-2020/04),
aBeacon consists of customized BLE devices at 12,109 mer-
chants, interacting with 109,378 couriers to infer their status
to assist the scheduling of 64 million delivery orders for 7.3
million customers with a total amount of $600 million USD
order values. Although in an academic setting, using BLE
devices to detect arrival and departure looks straightforward,
it is non-trivial to design, build, deploy, and operate aBeacon
from its conception to its retirement at city scale in a metric-
based approach by considering the tradeoffs between various
practical factors (e.g., cost and performance) during a long-
term system evolution. We report our study in two phases, i.e.,
an 8-month iterative pilot study and a 28-month deployment
and operation in the wild. We focus on an in-depth reporting
on the five lessons learned and provide their implications in
other systems with long-term operation and large geospatial
coverage, e.g., Edge Computing.

1 Introduction
Instant delivery is an emerging business where online orders
(e.g., groceries or foods) are delivered within a short time
(e.g., 30 mins) from merchants (e.g. grocery stores and restau-
rants) to customers. This business grows rapidly in recent
years with the emergence of several online platforms, e.g.,
Prime Now [6], Uber Eats [50], Instacart [26], DoorDash [16],
Deliveroo [14], and Alibaba Local Services [17]. In an instant
delivery service, a customer uses an APP on a platform to
place an order at a merchant; the platform assigns a courier
to pick up this order at the merchant and then deliver it to the
customer. It is essential for the platform to know its couriers’
real-time arrival status at merchants, which is used to assign
new orders to the most suitable couriers based on their loca-
tions to avoid an order delivery overdue given short delivery
window [57]. While the outdoor status of couriers can be
obtained by smartphone GPS, inferring the indoor status is
always challenging due to a lack of infrastructure at scale.

In this paper, we report a 3-year study for a system named
aBeacon developed by Alibaba Inc. [5] in Shanghai to infer

its couriers’ indoor status, i.e., arriving and departing at mer-
chants. The indoor status inference is of great significance
for Alibaba Local Services (a subsidiary of Alibaba Inc. for
instant delivery), since couriers spend almost one third of total
working time indoor based on our data. The goal of aBeacon
is to provide a city-wide indoor sensing solution with practical
cost/performance tradeoffs when deploying in the wild. We
share one-month data of aBeacon for future research1 [1].

Admittedly, indoor arrival and departure status detection
is not technically challenging and has been widely investi-
gated in controlled environments, e.g., labs, museums, and
airports. However, it is still an open question for city-wide
detection in the wild. In industry, current solutions mainly
rely on either courier’s smartphone GPS (which is inaccu-
rate in indoor environments) [29] or manual reporting (which
suffers from intentional or unintentional human errors). In
academia, the solutions are based on Wi-Fi [11,13,23,31,39],
LED fixtures [32, 49, 52, 54], and RFID [2, 51]. However,
each of them has limitations for a city-wide deployment with
more than 12,000 merchants and 109,000 couriers with only
commodity smartphones. Wi-Fi based solutions are limited
because continuous scanning is required to keep the Wi-Fi
list updated, which brings much extra power consumption for
courier’s smartphones, and more importantly, for merchants
without Wi-Fi Access Point devices, it is costly to deploy
new ones [9, 30, 33, 41]. LED solutions do not scale up due
to hardware modification costs [49]. RFID solutions require
additional equipment on both receivers and transmitters.

In this work, we argue the Bluetooth Low Energy (BLE)
device [15, 19, 24, 56] is a promising solution to achieve our
goal. BLE is not a new technology, and BLE-based iBeacon
was introduced by Apple [25] in 2013. However, the new fea-
tures provided in BLE 5.0 [45] in 2016 (e.g., longer range and
faster speeds) offer us the opportunity to build aBeacon start-
ing from 2017/05. We deploy 12,109 customized aBeacon
devices to 12,109 merchants on Alibaba platform in Shanghai.
An aBeacon device is a low-cost ($8 USD) broadcast-only
BLE device, and does not have GPS or cellular/ Wi-Fi con-
nections, so it cannot receive any update, and it also cannot
directly communicate with back-end servers. An aBeacon
device deployed in a merchant constantly broadcasts its ID tu-
ple (UUID, major, minor) following the BLE protocol, which
will be received by couriers’ smartphone APP if in proximity

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=75174
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and then uploaded to a server by APP using smartphones’
Internet connection. Based on the uploaded ID tuple, the
server is aware of the couriers’ arrival to this merchant given
previously-mapped device-merchant pairs in the deployment.

BLE devices have several advantages. Continuous scanning
in BLE only introduces less than 2% extra power consumption
on couriers’ smartphones based on our experiments, which is
much less than Wi-Fi [7]; compared to RFID-based solutions,
no hardware modification is needed on the courier end, since
aBeacon only requires a courier to have a smartphone; com-
pared to LED, battery-powered BLE devices can be installed
in many places due to their small size and portability. We
note that a key limitation of aBeacon is we need to deploy
an aBeacon device at every merchant, which introduces both
hardware and deployment costs. However, our deployment
has a low cost since we utilize an Alibaba in-house team and
its members visit merchants periodically for business devel-
opment; the hardware cost of aBeacon can be managed if we
only remain core functions, e.g., no GPS, no cellular/Wi-Fi,
and no Over-The-Air (OTA) updates.

In a control environment, using BLE devices to detect ar-
rival and departure is straightforward. However, it is non-
trivial to build, deploy, and operate aBeacon from the ground
up, considering the tradeoffs between various practical fac-
tors, e.g., cost and performance, in a metric-based approach.
BLE devices are already applied in real-world applications,
e.g., interaction in museums [34] and indoor localization in air-
ports [47]. However, we argue that these indoor environments
are normally under the control of BLE system operators. Still,
the indoor environments for instant delivery (e.g., shopping
mall) are not under the company’s control, i.e., in the wild.
To our knowledge, there are few studies, if any, on a practical
city-wide BLE device deployment in the wild. We introduce
aBeacon based on Alibaba Local Services for courier indoor
status monitoring (i.e., arrival and departure) in a 36 month
two-phase study from 2017/5 to 2020/4.
• Phase I: 8-Month Iterative Pilot Study (2017/5-12). We

deployed three types of commodity BLE devices in 18
merchants and built an APP to test the feasibility of BLE.
Based on the promising results, we customized aBeacon
devices for lower cost and new functions. We deployed one
customized aBeacon device and one commodity device in
200 merchants to A/B test their performance.

• Phase II: 28-Month Deployment and Operation in the
Wild (2018/1-2020/4). We deploy and operate 12,109
aBeacon devices in Shanghai with one device in each mer-
chant. In this phase, aBeacon interacts with 109,378 couri-
ers to provide their status to assist the scheduling of 64
million delivery orders for unique 7.3 million customers
with a total amount of $600 million USD order values.

As of 2020/4, aBeacon is being retired and replacing by a
new system aBeacon+ (introduced in the Discussion section).
In this Operational Systems track submission, we focus on 5
lessons we learned in our 3 year study of aBeacon from its

conception to retirement to provide new insights for the exist-
ing design assumptions based on our successes and failures.

Lesson learned 1: Explicitly Quantifying the System
Gain. During our interaction with the Alibaba executives
team who makes the decision to fund aBeacon, we utilize a
metric-based approach to quantify aBeacon’s monetary gain
(i.e., benefit minus cost) to justify aBeacon. In particular,
we explore the fundamental tradeoff between cost and bene-
fit (proportional to its performance) to optimize the gain of
aBeacon by (i) reducing the cost by customizing new devices
and utilizing our in-house team without technical expertise for
configuration-free deployment, and (ii) increasing the benefit
by improving lifetime, reliability, and utility. We study the sys-
tem gain in an evolving cumulative fashion at the fine-grained
device level. aBeacon achieves the break-even point where its
benefit is equal to its cost after 12 months of the deployment,
and then generate 14 months of benefits. In retrospect, a batch
deployment, instead of an "one-shot" deployment, could make
aBeacon break even earlier.

Lesson learned 2: System Scale Evolution in the Wild.
Even though a device has an expected lifetime of 24 months,
aBeacon’s scale (i.e., number of live devices) has been con-
stantly shrinking, immediately after fully deployed in the wild,
for the entire 26 months of the operation. In particular, the
decrease is steady in the first 20 months due to various fac-
tors (e.g., deployment, hardware, and merchants closed) yet
with a stable citywide spatial coverage; whereas the decrease
is dramatic in the last 6 months due to clustered device bat-
tery run-outs. This observation has the potential to provide
some guidance on the re-deployment strategies (e.g., timing
and priority) to keep the system scale and a positive gain
(as suggested in the Lesson Learned 1), e.g., large-scale re-
deployment much earlier than expected battery lifetime. In
retrospect, aBeacon’s scale shrinking is much worse than our
expectation, making us rethink the initial rationale of deploy-
ing physical devices in the wild. It motivated us to virtualize
the next generation of aBeacon, i.e., aBeacon+.

Lesson learned 3: Lifetime in the Wild. During the
aBeacon operation, the lifetime of 42% devices is longer
than deployment environment (e.g., a device is live but the
merchant it was deployed is closed). However, once deployed
in the wild, large-scale recycling of low-cost ($8 USD) de-
vices from these short-lifetime environments is not practical
due to significant labor. In retrospect, aBeacon devices could
be designed with different energy modules for different envi-
ronment lifetime (e.g., predicted based on our order data) to
minimize the hardware cost.

Lesson learned 4: Reliability in the Wild. Many existing
sensing systems (e.g., proximity [36], gesture [58], and breath
[55]) are mainly tested in control environments with high
reliability [22]. However, we found that even for simple ar-
rival detection in aBeacon the reliability is heavily affected
by many real-world factors including smartphone diversity
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(e.g., 52 phone brands and 672 phone models in our platform),
device placement (e.g., non-expert installation), and courier
mobility behaviors. In retrospect, we could add an OTA up-
date function to some devices (but not all devices) deployed
in uncertain environments, and utilize couriers’ phones to
update them, e.g., increasing their transmission powers.

Lesson learned 5: Utility in the Wild. Unlike other infras-
tructures, e.g., Wi-Fi, we found that in our aBeacon operation,
the locations with more interactions between couriers and
devices may not have higher device deployment utility (quan-
tified by the order delivery rate improvement based on courier
detection). In contrast, the locations with higher uncertainty
of courier mobility behaviors (e.g., higher floors) lead to a
higher utility. In retrospect, we could change our deployment
strategies to prioritize more uncertain environment.

Based on the above lessons learned, we discuss our limi-
tations and potential applications of aBeacon and then dis-
cuss their implications to other systems with long-term broad
geospatial coverage (e.g., Edge Computing), and finally share
the direction of our ongoing work aBeacon+.

2 aBeacon Design Goal
In aBeacon, a generic workflow is as follows: (1) devices de-
ployed in indoor merchants to continually broadcast their ID
tuples; (2) an embedded BLE scanning module in the Alibaba
couriers’ smartphone APP (mandatory for all couriers) to re-
ceive these ID tuples from devices when in proximity and to
upload them to a back-end server using the smartphone Inter-
net connectivity; (3) The server updates couriers’ arrival and
uses them for various functions, e.g., new order scheduling.
Based on this workflow, we introduce our metrics as follows.

2.1 Cost and Performance Metrics
Cost CDev: The costs of a device in aBeacon mainly consist of
the hardware cost and the deployment cost (i.e., the shipping
and labor cost to deploy a device at a merchant).
Lifetime Pi

Life: In our design, we envisioned a lifetime of a
device for two years, and then redeploy new devices after two
years if (i) aBeacon was successful (Yes); (ii) the deployment
cost was still low (Yes); and (3) aBeacon was still the best so-
lution (No since we have aBeacon+). The lifetime of a device
i is affected by the design (e.g., battery) and the environment
(e.g., the deployed merchant is closed).
Reliability Pi

Reli: We quantify a device i’s reliability by the
percentage of couriers we detected among all arrived couriers.
The ground truth of the courier arrival is obtained by the
delivery order accounting data. Pi

Reli is affected by device
deployment, smartphone diversity, and courier mobility.
Utility Pi

Util: We quantify the utility of a device i by overdue
delivery rates reduction for the merchant after i was deployed
in it. After a merchant was deployed with a device, the plat-
form can better detect and predict the status of couriers around
this merchant, which are used to schedule new orders for this
merchant by finding nearby couriers (e.g., a courier just left),

Table 1: Metric Summary
CDev: cost of a device, i.e., hardware & deployment
COver: cost of overdue penalty per order, e.g., $1.
Pi

Life: lifetime of a device i
Pi

Reli: reliability of i
Pi

Util: utility of i
t i
0: day of i was deployed

T : # of days since aBeacon deployed
Nt : # of deployed devices until the tth day
Oi

t : # of orders at tth day in the merchant with i

thus reducing the overdue rate for this merchant. Pi
Util is af-

fected by a merchant’s features where i was deployed (e.g.,
merchant locations, floors).

2.2 Metric-based Approach for Trade-offs
We utilize a metric-based approach to explore the trade-off
between costs and performance by Eq. (1). Assuming it has
been T days since aBeacon was deployed, the cumulative
aBeacon gain GT is given by the difference of (i) the cost CT
of deploying aBeacon until the T th day; and (ii) the benefit
(i.e., monetary saving) brought by performance improvement,
i.e., overdue reduction due to better detection by aBeacon.

GT =
T

∑
t=1

Nt

∑
i=1

Bi
t −CT (1)

where Nt is the number of devices deployed until the tth day
(t ≤ T ) including live and dead devices. CT = NT ·CDev is the
cost of all devices until T th day where CDev is a device cost.
Bi

t is the Benefit of a device i in the tth day as

Bi
t = F1( Pi

Life, t, t i
0 ) · F2( Oi

t , Pi
Reli, Pi

Util, COver ). (2)

F1(Pi
Life, t, t

i
0) indicates whether or not a device i reached its

lifetime limit by the tth day. It was calculated by remain-
ing lifetime Pi

Life − (t − t i
0), where Pi

Life is the lifetime of
i; t i

0 is number of days that device i has been deployed.
F1(Pi

Life, t, t
i
0) = 1 if Pi

Life− (t− t i
0)≥ 0; F1(·) = 0 otherwise,

i.e., no remaining lifetime, so we do not have to consider F2.
F2(Oi

t ,P
i
Reli,P

i
Util,COver) indicates the monetary saving by re-

duced overdue penalty of the orders detected by i. Oi
t is the

number of orders at the tth day in a merchant with i, e.g., 100;
Pi

Reli is the percentage of the orders whose couriers can be
detected by i, e.g., 80%; Pi

Util is the reduced overdue rate (com-
pared to the overdue rate before the device was deployed) for
all orders whose couriers are detected by i, e.g., 20%; COver
is the overdue penalty per order, e.g., $1. An example of F2 is
the product of all these terms, i.e., Oi

t ·Pi
Reli ·Pi

Util ·COver (e.g.,
saving is 100 ·80% ·20% ·$1 = $16).

3 aBeacon Life Cycle Overview
Unlike the wireless systems (e.g., Smart Home IoT) that can
be updated by OTA, an aBeacon device was not designed
to be updated after customization to save the hardware cost.
Thus, separated by the time we finished the customization

3



Table 2: Overview of Two Phases

Phase I: 8-month Pilot Study
(2017/5 – 2017/12)

Phase II: 28-month Operation in the Wild
(2018/1 – 2020/4)

Conception Stage
(2017/5-8)

18 merchants,54 devices

Customization Stage
(2017/8-12)

200 merchants, 400 devices

Deployment Stage
(2018/1-3)

12,109 merchants & devices

Operation Stage
(2018/3-2020/4)

Evolving 

C
os

t Hardware Commodity (Fig.1) Commodity ($11, Fig.1, T4) 
Customized ($8, Fig.2) Customized

Deployment Our Team (Fig.1) Our Team 302 Business Managers

Pe
rf

or
m

an
ce Lifetime Fig. 1 Commodity (2-3 yrs. advertised)

Customized (2 yrs. designed)
In retrospect, we should have selected 

the merchants with longer lifetime Fig. 4 & 5

Reliability 98% Both are Close to 98% Installation Handbook Provided Fig. 6-8 & Table 5

Utility Highly Profitable Merchants Selected Fig. 9-12

Phase

Stage & Scale

Goal

Tx Power -59 dB -65 dB -65 dB
Advertised 

Lifetime ≤ 3 yr 2 ~ 3 yr ≤ 3 yr

Cost $11 each $10 each $10 each
Encapsulation Water, Dust, Shock Proof Dust Proof Only

Merchant 

Devices

Size Comparison Device 1 (T15) Device 2 (T4) Device 3 (T11)

Fig 1: Deployment for Conception Stage

(i.e., 2018/01), we divide the entire 3-year study of aBeacon
into two phases, i.e., Phase I: 8-Month Pilot Study; and Phase
II: 28-month Deployment and Operation.

As in Table 2, we carefully designed the stage, scale, cost,
and performance to serve each phase’s purposes.

3.1 Phase I: 8-Month Pilot Study (2017/5-12)
In this phase, we performed two studies in a conception stage
to investigate three commodity devices, and a customization
stage to design and evaluate new devices with A/B testing.

(i) Conception Stage (2017/5-8): As shown in Table 2, we
aim to understand whether a BLE device system can detect the
couriers’ indoor arrival and departure with reliability higher
than 95%. We bought 54 commodity devices in three brands
and deployed them in 18 merchants of a shopping mall in
Shanghai. Each merchant was equipped with three commodity
devices of different brands, as shown in Fig.1 with technical
specifications. We set some key configurations of couriers’
mobile APP when interacting with commodity devices as
parameters for further developing, e.g., scanning duration

Table 3: BLE Chip Comparison
.

BLE
Chip

Link
Budget

Tx Power
Consump.

(curr. at 0dB)

Sleep Power
Consump.

(curr.)

Price
$/unit

CC2540 [27] 97 dB 21 mA 0.9 ua ∼1.1
DA14580 [43] 93 dB 12.4 mA 0.5 ua ∼1.1
CSR1010 [40] 93 dB 18 mA 5 ua ∼1.1
nRF51822 [44] 96 dB 8.06 mA 2.6 ua ∼1.1

and intervals, data upload cycle, and working hours. Note
that the couriers’ APP and the back-end server developing
were also the major works in this stage, but we omit them in
this paper since they are standard. After this study, we had
average reliability of 98%, so we concluded that a beacon-
based solution could achieve high reliability.

(ii) Customization Stage (2017/8-12): Instead of using
commodity devices, we customized our aBeacon device for
low cost ($8 per device) and longer lifetime. We performed a
middle-scale A/B testing between the best one among three
commodity devices and our customized device. As in Table
2, after the reliability had been proved in the previous stage,
our customization was focused on the hardware cost and life-
time since the large-scale city-wide deployment cost in Phase
II is marginal when we utilize our in-house business team.
In our customization, three components, i.e., BLE chip, bat-
tery, and casing, were carefully customized to achieve overall
lower cost and longer lifetime. (1) For the BLE chip, we com-
pared the mainstream BLE chips as in Table 3. Since our
BLE devices in aBeacon were expected to broadcast for at
least two years without external power continuously, we chose
the nRF51822 from Nordic Semiconductor as the BLE chip
since it has both the minimum Tx power and acceptable other
configurations. (2) For the battery, we considered both the
lithium battery and the alkaline battery since we expected
an aBeacon device could operate for at least two years with-
out maintenance. The lithium battery usually has a smaller
size, but the alkaline battery has a much better unit capacity
(mAh/$), so we used two alkaline AA batteries in cascade .
(3) For the casing, we considered dust, water, and shockproof
for transportation and operation in various indoor (or poten-
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tial future outdoor) operations. Finally, we built 200 aBeacon
devices, as shown in Fig.2. We A/B tested our 200 customized

Battery(2xAA)PCB Board
(nRF51822)

Water-proof 
Dust-proof  

Shock-proof
casing

Fig 2: Customized Hardware for aBeacon
devices with 200 commodity devices (i.e., Device 2 (T4) [10]
in Fig.1). We selected 200 merchants in two malls and placed
one customized device and one commodity device side by
side to compare their performance. After 2-month testing,
we concluded our customized devices are ready for deploy-
ment and operation because they have similar reliability with
the commodity devices, but have a lower hardware cost and
potentially longer lifetime.

3.2 Phase II: 28-month Operation (18/1–20/4)
We introduce a 3-month deployment and a 25-month opera-
tion stage of 12,109 devices in Shanghai (visualized in Fig.3.)

(i) Deployment Stage (2018/1-3). After we received all
aBeacon devices from a manufacturer, we aim to deploy
them in 12,109 chosen merchants among 57,223 merchants in
Shanghai after consulting with our accounting department to
understand these merchants’ profitability, potentially decides
our aBeacon’s utility. We decided to deploy around 12 thou-
sand devices for aBeacon because of the approved $100,000
budget, i.e., the system cost. Assuming no benefit at all, based
on Eq. (1), our system gain GT is −$100,000 (i.e., the trivial
lower bound in Fig.3 (iii)). In Phase I, our team deployed
200 devices by ourselves, but 12,109 devices were out of our
team’s capability. As a result, we utilize our in-house regional
business development managers who periodically visit all mer-
chants for regular business meetings to install our aBeacon
device. We mailed our aBeacon devices and guided them for
aBeacon device deployment and mapping between aBeacon
devices and merchants by a detailed handbook, which shows
“Where to attach the device?” (e.g., main entrance), “How
to attach the device?” (e.g., double-sided tape) and “How to
map the device?”. The mapping was achieved by scanning
a QR code on an aBeacon device and then choosing its mer-
chant from a given merchant list in a business manager APP.
302 managers participated in our deployment process, and it
took us around two months to deploy all the devices after one
month of shipping and logistics. Since our business managers
deploy our devices for free, the main deployment cost is the
shipping cost, which is around $1 per device.

(ii) Operation Stage (2018/3-2020/4). After the deploy-
ment, aBeacon is fully operational, and we have been mon-
itoring its status and utilizing it to detect couriers remotely
based on the data we collected from couriers’ APPs. We em-
bed the device monitoring function in the official smartphone
APP of 109,378 Alibaba couriers in Shanghai. When we first
receive an aBeacon device ID tuple from a courier’s phone,

Table 4: Operation Data Collected

Attribute Example
Courier ID C_000001
Timestamp 2019/08/15 12:30:23
Device ID Tuple (UUID, Major, Minor)
Merchant ID M_000001

Attribute Example
RSSI -80dB
Phone ID D_000001
Phone Brand/OS Apple/iOS
Phone Model iPhone X

Attribute Example
Courier ID C_000001
Timestamp 2019/08/15 12:30:23
Latitude 31.243715
Longitude 121.245847
Speed 3.7 km/h
Altitude 40.2 meters

Attribute Example
Courier ID C_000001
Timestamp 2019/08/15 12:30:23
Merchant ID M_000001
Order ID O_000001

Report Type
Acceptance/Arrival/
Departure/Delivery

(b) Courier GPS data

(a) aBeacon monitoring data

(c) Courier order report data

we need to make sure this live device is correctly deployed
and works properly. For all devices, their initial status on our
server end is “Not Deployed”; once a manager completes
the mapping operation on her APP, a “Not Deployed”device
becomes “Online”. For all “Online", we use order accounting
data to validate if the deployment is correct or not indirectly:
(1) if a device is heard by more than three couriers whose
current orders or GPS would not let them pass the merchant
mapped to this device, this “Online” device would be changed
to “Wrongly Deployed”; (2) if no ID tuples were received
from a device for 24 hours, and if the mapped merchant still
has orders during these 24 hours (e.g., more than ten orders),
then this “Deployed” device would be considered as “Offline"
or “Retired” based on its expected lifetime is reached or not
since deployment; (3) if ID tuples were received from a de-
vice, but the merchant was closed (based on our accounting
data), it would be considered “Closed".

(iii) Operation Data Collected. During our operation, we
collected three kinds of data sets to monitor and validate
aBeacon. (a) aBeacon Monitoring Data. As in Table 4(a),
every time an aBeacon broadcast was received by a courier’s
phone, we recorded the information of the aBeacon device,
phone, and the Received Signal Strength Index (RSSI) of the
broadcast. (b) Courier GPS data. As in Table 4(b), GPS data
were collected under courier consent since customers also like
to know where his/her order is, and the platform needs to know
couriers’ locations for order assignment. (c) Courier Order
Report Data. As in Table 4(c), for each delivery order, the
courier needs to report when he/she arrives at or leaves from
the merchants manually for real-time order status updates.
These report data are used as the ground truth for aBeacon
detection. However, in our previous study, we found couriers
often forgot to report their status and exaggerate their status
(e.g., early reporting) to game the scheduling system for better
order assignment. That is why these report data can only be
used as post-hoc ground truth, i.e., we know that a courier
arrived at a merchant after an order was delivered since a
courier often forgets or falsely reports their arrival. Please
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see our Discussion section for details on using aBeacon for
Anomaly Detection.

4 aBeacon Operation Results
4.1 Result Overview
In Fig.3, we show a panorama of aBeacon life cycle with our
two phases from 2017/5 to 2020/4.
Quantitative System Evolution Overview: In Fig.3 (i),
given a day t, we show both the number of aBeacon devices
Nt with “Deployed” status in t and the number of delivery or-
ders Ot whose couriers are detected by aBeacon in t. We omit
the number of couriers detected since it is highly correlated
with the number of delivery orders. The detailed analysis on
Nt and Ot in Sec.4.3, but we would like to highlight two tech-
nical incidents affecting both Nt and Ot as indicated by three
circles in Fig.3 (i). On May 16th and 21st, 2018, a configura-
tion exception occurred on the APP server and led to data loss,
and our team diagnosed and fixed it quickly. In May 2019,

we found an unusual decrease in detected orders, which took
our team around two months to diagnose the root cause, i.e.,
a caching problem in the courier APP of some phone brands.
In particular, since the courier APP is not always connected
to the server, it would cache some received aBeacon device
data if the network connection is unavailable. But when the
local cache was full, received data got lost without exceptions
raised in some smartphones brands. By the end of June, the
problem was fixed, and the detected orders increased.

Qualitative Spatial Coverage Evolution: In Fig.3 (ii), we
visualize the aBeacon spatial evolution in Shanghai at four
critical periods. (a) 2018/01: 2 weeks into the deployment
stage where aBeacon has not been uniformly deployed; (b)
2018/03: aBeacon is fully operational, reaches its spatial scale
peak, and covers all the central business districts in Shang-
hai; (c) 2019/09: aBeacon has been operating for 20 months,
and the spatial cover remains relatively similar, and it is two
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months away from the starting of clustered battery run-out;
(d) 2020/03: aBeacon drops below a critical level and is being
retired and replaced by aBeacon+ (see the Discussion sec-
tion). We found even the scale of aBeacon has been shrinking
right after the full deployment due to various real-world is-
sues, the spatial coverage has been relatively stable for 20
months. Based on our field study, we found the most of the
dead devices are related to merchants closed, deployment im-
perfection, hardware malfunction, and vandalism. It provides
some practical guidelines for our current project of the next
generation of aBeacon, i.e., aBeacon+.

4.2 System Gain Evolution
System Gain Overview: In Fig.3 (iii), we utilize Eq. (1) to
show the system gain, i.e., the monetary saving minus the
system cost. All metrics in Eq.(1) can be directly measured
by our aBeacon data except the system utility Pi

Util. We show
three cumulative gains (defined in Sec.2.2) based on the empir-
ical value of system utility Pi

Util (overdue rates reduction after
device i was deployed, discussed in Sec.4.6), along with its
lower bound Pi

Util (no overdue reduction at all) and its upper
bound Pi

Util (complete overdue reduction), respectively. We
found aBeacon achieved a break-even point after 12 months ,
which provides empirical guidance for our aBeacon+. Some
additional applications of aBeacon for the Alibaba group are
shared in the Discussion section.

Lesson Learned 1: Explicitly Quantifying the System
Gain. Even though the cost of a real-world system can be of-
ten explicitly quantified, the benefit of a system is often hard
to be, which makes the justification of deploying a system
challenging when convincing the decision-makers. Based on
our interactions with the Alibaba executive team, who made
decisions to initiate and fund aBeacon, we utilized a metric-
based approach to quantify the cumulative system gain to
justify aBeacon development. In particular, we explore the
cumulative system gain by (i) reducing the cost by customiz-
ing new devices (e.g., 20% less than commodity devices yet
with more functionality) and utilizing our Alibaba in-house
business development team without technical expertise for
large-scale deployment due to our configuration-free setting,
and (ii) increasing the performance by extending device life-
time, improving reliability, and enhancing utility. As shown
in Fig.3 (iii), aBeacon achieves a break-even point after 12
months. In retrospect, a few approaches could be used to
make sure aBeacon achieves break-even earlier. The most
promising one is a batch deployment instead of a “one-shot"
deployment in a short time, which have been used in our other
physical device deployment projects.

In-depth System Gain Investigation Overview: To provide
an in-depth investigation on the cumulative system gain, we
analyze seven metrics in Eq.(1) and (2) individually: (i) CDev
and COver are the individual device cost and the order overdue
penalty, which are almost fixed in our setting; (ii) Nt and Ot

are related to the system scale and we study them in Sec. 4.3;
(iii) Pi

Life, Pi
Reli, Pi

Util are related to the system performance in
terms of lifetime, reliability, and utility, which are studied in
Sec. 4.4, 4.5, and 4.6, respectively. The correlation between
different metrics is introduced in Sec. 4.7.

4.3 Scale Metric: Number of Device & Order
Scale Metric 1: Number of Devices Nt . In Fig.3 (i), start-
ing from our deployment stage in Phase II, the number of
aBeacon devices increased significantly until the end of our
deployment stage in 2019/3. However, after aBeacon scale
peaked in 2019/3, two decreasing trends are observed. (1) The
first one is a slow decrease throughout the major part of Phase
II from 2018/3 to 2019/10, where we lost some devices ev-
ery day. In addition to vandalism, deployment, and hardware
issues, the primary reason is that some merchants terminate
their business with Alibaba every day. The merchant turnover
rate in China online platforms is high, and almost 70% of
new merchants were closed within one year of the opening
in 2017 [20]. We report our empirical merchant lifetime data
in Fig.4 and analyze it in detail later. (2) The second one is
the sharp decrease from 2019/11 to 2020/2, due to the clus-
tered battery running out after 20 months of operations since
2018/3. Such an observation provided some insights about
our potential re-deployment strategies, which we will discuss
in the Lesson Learned 2.

Scale Metric 2: Number of Orders Ot . As shown in the
Cumulative System Gain Eq.(1), the number of orders Ot
whose couriers were detected by aBeacon is the central part
of deciding the gain of aBeacon. In Fig.3 (i), we found in the
full operation stage of Phase II (from 2018/3 to 2019/11), the
number of orders detected is around ten times the number of
aBeacon devices, which implies each device serves ten orders
on average every day. This ratio remains similar throughout
Phase II except for the mid-February, during which the overall
number of orders decreases sharply. Mid-February is typically
the Chinese Spring Festival, i.e., the biggest holiday where the
number of total orders reduced since many merchants closed
during this time. We observed sharp decreases and recoveries
during February of 2018, 2019, and 2020 in Fig.3 (i), and
the corresponding impact on the system gain in Fig.3 (iii). In
2020, the impact of COVID-19 lasts after February, so we do
not see an apparent recovery at the end of February.

Lesson Learned 2: System Scale Evolution in the Wild.
The scale of aBeacon (quantified by the number of devices
Nt and the number of associated orders Ot) is essential to
ensure the cumulative system gain. As in Fig.3 (i), after fully
deployed in the wild (2018/3), aBeacon scale has been con-
tinuously shrinking for 26 months until 2020/4, even though
devices have an expected lifetime of 24 months. In particular,
the decrease is steady in the first 20 months (from 2018/3 to
2019/10) due to various factors (e.g., vandalism, hardware
malfunction) yet with a stable city-wide spatial coverage in
Shanghai (Fig.3 (ii)). In contrast, the decrease is quite sharp in
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the last six months (from 2019/10 to 2020/4) due to clustered
battery run-out. It suggests that if we want to keep the system
scale, we should start a full-scale re-deployment much earlier
than expected, or perform batch-based small re-deployment
continuously if we want to keep aBeacon at scale. However,
we did neither of them in practice since we move on to a new
system aBeacon+ without deployed devices as introduced in
future work. Further, by using the number of orders as a bridg-
ing factor, our results also provided some insights on how to
link the traditional system scale (i.e., number of devices) to
the business revenue (i.e., reduced order overdue penalty) to
justify their potential correlation. The insights help us com-
municate with the Alibaba executive team when reporting the
impact of aBeacon on the overall Alibaba ecosystem.

4.4 Performance Metric 1: Lifetime Pi
Life

Lifetime Overview: The lifetime of an aBeacon device is
decided by two primary factors: (i) the battery size, which
was considered in the customization stage of Phase I when we
design our hardware; (ii) the merchant lifetime, which unfor-
tunately was not considered in the deployment stage of Phase
II as shown in Table 2 since we mainly consider the prof-
itability of merchants. In our defense, there should be a strong
correlation between the profitability and lifetime of a mer-
chant, but we found that the profitability of many merchants
has been rapidly changing, especially on the online platform.
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Fig 4: CDF of Device Lifetime
and Merchant Lifetime

Further, given the high real
estate rental fees in Shang-
hai, many merchants move
their physical stores fre-
quently. If a merchant de-
ployed with an aBeacon
device is closed or moved,
there is a high chance that
the deployed device would
be thrown away. The CDF
of devices’ and merchants’
lifetime are given in Fig.4. Around 23% and 40% of mer-
chants closed within 1 or 2 years, respectively; whereas more
than 50% of devices died within one year, much less than the
expected lifetime based on battery alone.

Lifetime Correlation: An in-depth visualization of the cor-
relation between these two factors is scatter-plotted in Fig.5
where we record the last day a device i was heard as X-axis;
the last day the corresponding merchant had orders on our
platform as Y-axis. We have three observations: (1) points
(15%) around the diagonal (|x−y| ≤ 14, i.e., 14 days) suggest
devices died within two weeks of the closure of the corre-
sponding merchants on our platform; (2) another cluster of
points (17%) is around x = 640, which means a device is
dead after 21 months of operation, as observed in Fig.3 (i).
(3) for the points above the diagonal (26%, x < y), it indi-
cates the merchant has active orders from our platform, but
the aBeacon device is dead; for the points below the diag-

onal (42%, x > y), it indicates the merchant closes on our
platform (i.e., no orders) but the device can still be heard
by couriers, i.e., the device may be in the original locations
or nearby, and can be heard when our couriers in proximity.

Fig 5: Last day a Device was
Heard and Last day the Corre-
sponding Merchant has Orders

We note that a merchant
has no orders on our plat-
form does not necessar-
ily mean the merchant is
closed, but it can be used
to approximate the mer-
chant’s lifetime on our plat-
form. For a closed mer-
chant, an intuitive idea is
to recycle the device for re-
deployment, but in practice,
we did not do it due to two
reasons: (1) the platform is
not generally informed in
advance when the merchant is closing so we cannot prepare
in advance to recycle the device; (2) the device recycling in-
troduces significant labor and shipping costs, and the recycled
devices may be damaged or with low battery, which makes
purchasing a new device a better choice overall. As a result,
we did not perform large-scale device recycling in practice.

Lesson Learned 3: Lifetime in the Wild. The lifetime of
42% devices is longer than the lifetime of their deployed en-
vironment (e.g., merchants). It provides new insights on our
design assumption on mobile device energy since a longer
battery life may not increase the device lifetime due to uncer-
tainty of the deployed environment but introduce higher costs.
This lesson is especially true when the large-scale device
recycling and re-deployment are not practical due to higher
labor cost. It motivated us to design devices with different
battery capacity and then deploy devices in batches to accom-
modate the environment’s lifetime, which can be predicted
by our platform data. We apply this lesson in our aBeacon+
where we use merchant phones as our virtual devices (instead
of deploying physical devices) to broadcast their ID so that
the couriers can receive them in proximity. In aBeacon+, em-
bedded in merchants’ smartphone APPs, the virtual device
broadcasting module has different versions, whose parameters
were set differently for different merchants.

4.5 Performance Metric 2: Reliability Pi
Reli

We quantify the reliability Pi
Reli of an aBeacon device i with

a percentage indicating among all the orders from a merchant
deployed with the device i, how many orders we detect. There
are three major factors impacting Pi

Reli: Stay Duration, Device
Deployment, and Smartphone Hardware.

Impact of Stay Duration on Pi
Reli. The stay dura-

tion is the time between a courier arrives at and de-
parts from a merchant. The stay duration varies due to
multiple factors such as the layout of a merchant, the
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courier’s walking speed, and whether an order is ready
when the courier arrived, i.e., waiting for the order or not.
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Fig 6: Impact of Stay Duration

In Fig.6, we found that the
longer that a courier stays,
the higher the Pi

Reli. The
stay duration is computed
as the differences of depar-
ture and arrival time from
the couriers’ order report
data in Table 4(c) Even
though there were inaccu-
rate report data due to hu-
man errors, our results are based on 76 million orders for two
years, ensuring our results are statistically significant. Two
observations can be made from Fig.6: (1) The reliability in-
creases with the staying duration, but does not change much
after 7 mins; (2) iOS has a much better performance than
Android.

Impact of Deployment Position on Pi
Reli. The deployment

position is an essential factor for reliability, as we found some
merchants with an exceptionally low detection ratio. Although
our deployment handbook suggested that “Beacons should
be attached around the order pickup area”, some business
managers put devices somewhere else due to various reasons.

Actual 
Device 

Coverage

Ideal 
Device

Coverage
Pickup
Area

Courier 1
Pickup Trace

Wall
Courier 2
Pickup
Trace

Fig 7: A Field Study of Deploy-
ment Position Impact

For example, some mer-
chants do not have a fixed
“meal/groceries pickup
area"; some merchants pre-
fer the device to be placed
somewhere else, e.g., under
the counter. We performed
some field study, and our
findings can be clearly
explained with Fig.7 that
depicts the layout of a
real-world restaurant. In
this merchant, there are
two entrances with a horizontal wall in the center. Two
couriers may pick up orders from both entrances, which leads
to the different indoor pickup traces. Unfortunately, because
the wall obstructs the device broadcast, only the Courier 1’s
arrival was detected, which results in a reliability Pi

Reli of
46% in our observed period. If the aBeacon device were
placed in the pickup area, we could have better reliability
since both courier traces can be detected. In short, the impact
of deployment position is difficult to estimate due to the
uncontrollable deployment quality. The reason is we utilize
our in-house business team with no deployment expertise (or
incentive), and a deployed device can be moved as well, both
of which typically leads to low reliability at some merchants.

Impact of Phones Brands and OS on Pi
Reli. Our goal is to

have most courier smartphones (if not all) to be compatible
with aBeacon at both the hardware (i.e., phone brands and

models) and software level (i.e., OS types). Given more than
109,000 couriers in Shanghai, it is challenging to either force
the couriers to use specific smartphone brands or know if a
courier uses an un-supported smartphone. To analyze the im-
pact of smartphone OS, we divide all the orders in aBeacon
merchants into two dimensions: whether its courier was de-
tected by aBeacon or not; whether its courier was using an
Android or iOS phone. As in Table 5, 63.4% of the orders

Table 5: Detected Ratio of Device OSs over All the Orders

Devices Detected Undetected
iOS 13.4% 2.4%

Android 63.4% 20.8%

were detected with the Android couriers (including 52 brands
and 672 models), and their average Pi

Reli is 63.4%
63.4%+20.8% =

75.2%; 13.4% of the orders were detected with the iOS
couriers, and their average Pi

Reli is 13.4%
13.4%+2.4% = 84.8%.
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Fig 8: Impact of Smartphone
Brand on Reliability

We found iOS performs
significantly better than
Android. For different
phone brands (different
hardware), the average
Pi

Reli varies. We show
the average Pi

Reli of nine
well-known brands in
China in Fig.8, in which
Nexus has the highest Pi

Reli
of 92%, and iPhones has a
Pi

Reli of 84%.

Lesson Learned 4: Reliability in the Wild. Many existing
wireless sensing systems (e.g., proximity [36], gesture [58],
breath [55], human-object interaction [22], and indoor path-
way mapping [46]) are mainly tested in the environments with
little uncertainty, so they have high reliability. However, we
found that even the reliability of a simple presence detection
(i.e., courier arrival) is far from guaranteed in a wild, and it
is affected by many real-world factors including smartphone
software& hardware combination (e.g., 52 phone brands and
672 phone models in Table 5 and Fig.8), and installation
position (e.g., low-cost yet unprofessional installation and
obstacles in Fig.7), and stay duration (e.g., no waiting time
for couriers in Fig.6). In retrospect, we could add an OTA
function to some of our devices (but not all devices) deployed
in uncertain environments and update them with couriers’
phones, e.g., increasing transmission power.

4.6 Performance Metric 3 Utility: Pi
Util

The overdue rate reduction is the metric we use to measure the
utility Pi

Util of deploying an aBeacon device i at a particular
merchant. For an overdue delivery order (e.g., longer than 30
mins for food), there is an overdue penalty COver with which
the platform will compensate the customer. A typical COver
is $1, but an overdue penalty could be as high as 200% of
the average profit per order if a customer brought delivery
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insurance. Specifically, the overdue rate is the percentage of
the overdue orders among the total orders. So the overdue rate
reduction is the difference between the overdue rates before
and after an aBeacon device deployment. We note that other
factors impact the overdue rates of a merchant, e.g., holidays
and weathers, but they are out the scope of our paper. We
use six months of data before aBeacon deployment and 24
months of data after aBeacon deployment in the evaluation.
There are many features of a merchant that decide the utility
of deploying an aBeacon device. We study two of them, i.e.,
Building Floor and City District, due to the space limitation.

Impact of Different Building Floors On Pi
Util. To evaluate

the impact of deploying an aBeacon device on different floors
on utility, we aggregate the overdue rate reduction on different
floors and compare them with the average overdue rate of all
merchants in Shanghai city before and after our aBeacon is
deployed. The device scale distribution on different floors
is given in Fig.9. As shown in Fig.10, the utility is higher
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Fig 10: PUtil after Deploy-
ment in Different Floors

on higher floors or lower basements than the ground floor.
This is because the stability of the courier indoor mobility
is disproportional to the distance after they enter a building.
The higher the floor, the longer the distance, the less stable of
courier mobility behaviors (e.g., arrival), the higher benefit for
aBeacon to detect these behaviors for later order scheduling.

Impact of Different City Districts on Pi
Util. To evaluate

the impact of districts, we choose five typical districts in
Shanghai and compare their average utility, i.e., the overdue
rate reduction after aBeacon was deployed. As shown in
Fig.11, Huangpu is a central business district with a popula-
tion density of 32,004/km2, about three times of New York
City (10,194/km2). Songjiang is a suburban area with a pop-
ulation density of 2,892/km2, comparable to Los Angeles
(2,910/km2). As shown in Fig.12, Pi

Util for all merchants with
aBeacon devices in Songjiang is lower than Shanghai city
average; whereas Pi

Util in Huangpu is much higher than the
average. This is because (1) there are more orders in a more
populous area such as Huangpu where each device can serve
more orders (we omit the results due to space limitation); (2)
the overdue rate is more severe in the city center, and the
aBeacon can detect couriers more effectively, which leads to
better scheduling and thus higher overdue rate improvement.

Lesson Learned 5: Utility in the Wild. Unlike other wire-
less infrastructures, e.g., Wi-Fi, we found the deployment
locations with more courier interactions (i.e., demand) during
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our system operation may not have higher utility (quantified
by delivery overdue improvement). Instead, we found that
the utility of an aBeacon device is proportional to the uncer-
tainty of the courier behaviors it can detect (e.g., couriers in
higher floors and basements or the downtown area as shown
in Fig.9 and Fig.11) because detecting couriers in these un-
certain environments can improve the later order scheduling,
thus higher utility. This is different from Wi-Fi or cellular
device deployment, which are mostly focused on the high
user density area. In short, our above findings can provide
practical design guidance for battery capacity, transmission
frequency and power, OTA interface, better installation, and
deployment strategies for future wireless systems in the wild.

4.7 Correlation between Different Metrics
Due to the space limitation, we briefly report the results of
the correlation between different performance metrics. Our
main finding is that for the same aBeacon device, when its
reliability is low, usually its utility and lifetime are below
average; whereas when its reliability is high, the utility is
more impacted by the merchant’s floors and districts. When
reliability Pi

Reli < 0.5, this correlation might be caused by
improper deployment, which (i) weakens the device utility
due to limited data gathered for order scheduling, and (ii)
reduces the device lifetime due to potential damage from
improper deployment. It also implies that we need to consider
other factors if we want to have a longer lifetime and push the
utility to the limit when Pi

Reli is already high. In our analyses,
lifetime and utility are not strongly correlated.

5 Discussions
5.1 Limitations of aBeacon
Manual Deployment: For a real-world deployment in the
wild, hiring professional teams ensure reliable deployment
results but introduces a higher deployment cost per device.
In our project, we use our in-house business team to deploy
and install aBeacon devices at more than 12,000 merchants.
Our aBeacon system works well in general under this deploy-
ment strategy. We admit that our approach may not apply to
other settings where such an in-house team is not available.
However, we believe our approach can be implemented by
Crowdsourcing [42] to deploy wireless devices with a lower
labor cost, given little configuration is needed.

No Precise Locations: Another critical limitation of
aBeacon is that it can only detect couriers’ arrival at mer-
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chants but cannot perform localization. Given our design goal,
a fine-grained localization would be a nice feature to have,
but it may not provide higher system gain. Localization in-
creases both hardware cost and deployment cost significantly
(it may need onsite configuration or fingerprinting [19]), and
may not reduce the overdue rates substantially since the order
scheduling only needs coarse-grained locations of couriers.

5.2 System Security
In addition to the hardware cost reduction, another significant
improvement in our customization stage is that we enable
our devices’ security functions. In traditional iBeacon pro-
tocol [25], a device ID tuple is fixed for each hardware and
broadcast in clear words. It reduces the system complexity
while making a device sniffer possible. For example, (1) ma-
licious attackers or unauthorized users (free-riders) can easily
restore the device map through war-driving around the de-
vices; (2) if they replicate some device IDs somewhere else,
wrong detection information will be collected by aBeacon.
To address this problem, we designed and implemented a
Time-based One-Time Password (TOTP) [53] algorithm to
encrypt the device ID broadcast by changing the major and
minor in the ID tuple periodically. A shorter period makes
the mapping harder to be restored, whereas a longer period re-
duces the complexity and the server workload. We set a daily
periodical change after exploring the trade-off. The mapping
of the device IDs and the merchant locations was stored on the
server so that only authorized users can access it. A detailed
study of system security is out the scope of this work and will
be reported in future work.

5.3 Courier Survey
Feedback is collected from couriers every month regarding
multiple aspects, e.g., APP performance, order scheduling,
employee care, and penalty appeal. Among the 433 negative
feedback on “APP performance” in a recent month, we found
the following feedback potentially related to aBeacon (# of
reports): inaccurate localization (23), slow localization (14),
cannot report arrival at the merchants (11), too much battery
consumption (8), too much data consumption (2), mandatory
Bluetooth on (2). The top three criticisms are all about local-
ization. The underlying reason is that the couriers must report
“arrival” at the merchants and customers, and the report must
be conducted near (e.g. within 500m) the merchants or cus-
tomers based on the courier’s GPS and the latitude/longitude
of the merchant or customer. GPS drifting due to the indoor
environment is the main reason for failed reports. The feed-
back results indicate that alternatives are need besides GPS.
aBeacon can help in some cases, but we still need to fix
the cases when GPS and aBeacon fail at the same time. We
should also take care of the battery and data consumption.

5.4 Ethics and Privacy
All the data sets are collected under the consent of the couri-
ers. In all our analyses, we have been working on aggregate

data. As a result, our results cannot be used to trace back
to individuals. The courier ID is an anonymous key to join
different data sets, and any other ID information cannot be
tracked or identified in practice. We did not utilize personal
information from the couriers, e.g., age, gender, income, to
protect the couriers’ privacy.

5.5 Additional Applications of aBeacon
In addition to the direct system gain we measure in this paper,
Alibaba has been using aBeacon data for a few additional
applications based on courier arrival detection.

Order Delivery Time Estimation: The Estimated Time of
Arrival (ETA) problem is one of the critical issues in the de-
livery industry, especially hard for the indoor environment.
Based on aBeacon data, we obtain travel time between differ-
ent indoor merchants and build a data-driven model for de-
livery time prediction, which has been used by other Alibaba
teams to predict the overdue rate for the order scheduling.

Merchant Location Correction: Accurate merchant loca-
tions are essential in the delivery service. Currently, these
locations are provided by merchants themselves and consist
of unintentional or intentional errors. Based on the aBeacon
data, we can measure the travel time between different mer-
chants, cross-validate the accuracy of these locations, and
potentially correct them based on massive traveling data.

Anomaly Detection: Unlike GPS data that can be faked on
the smartphone [37], aBeacon data provide a physical pres-
ence confirmation. aBeacon data have been used to detect
cheating in the delivery process, e.g., frauds conducted by
merchants and couriers for the platform subsidy. A detailed
courier behavior study measured by manually reported data
and automatically collected aBeacon data is out of this pa-
per’s scope and merits additional investigation.

5.6 aBeacon+: Next Generation of aBeacon
Since it is expected the maximum lifetime of aBeacon is
two years, we have been working on a new system called
aBeacon+ built upon aBeacon to retain its strengths and
address its limitations. In aBeacon+, under the merchants’
consent, we use merchants’ smartphones as aBeacon devices
instead of deploying aBeacon devices, to avoid the hardware
and deployment cost. aBeacon+ does not suffer from vandal-
ism, hardware malfunction, and merchant closures. We embed
a broadcasting module in the official merchant APP based on
the opportunity that almost every merchant owner needs to in-
stall a merchant APP to manage orders. The deployment and
operation insights we obtained from aBeacon have guided
our development of aBeacon+, e.g., batch-based deployment
and merchant targeting (see our Lessons Learned for details).

We acknowledge the incentives and privacy issues need our
attention to make aBeacon+ practical and salable. However,
we argue that the APP users may be willing to provide their
locations voluntarily with appropriate incentives in some set-
tings. In our case, a merchant provides this virtual aBeacon
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service on its smartphone. The virtual aBeacon can help the
platform decide whether an overdue order is because of the
merchant’s long order preparation time or the courier’s late
pickup. Similar applications have been launched in Singapore
and potentially in the US for public health purposes during
the recent COVID-19 pandemic. TraceTogether [35], a BLE
based APP developed in Singapore operates similarly to an
aBeacon+ scheme that users nearby can detect each other for
contact tracing purpose in response to COVID-19, which is
another example of smartphone users’ voluntary participation
under some practical incentive.

5.7 Implications on Others Systems
Our study offers some interesting implications for current and
future networked systems’ design, verification, and operation.

Offline Ground Truth Collection for the Verification of
Wi-Fi based Solutions: Along 48% of our merchants have
stable Wi-Fi access, aBeacon can be used to collect offline
ground truth for various applications based on Wi-Fi in the
wild to verify existing assumptions or models on Wi-Fi sys-
tems and contribute to the community.

Deployment Strategies for 5G and Edge Computing: It
has been widely accepted that the extreme densities of base
stations and devices are needed to support 5G applications
due to its high carrier frequencies with massive bandwidths
[3, 8]. Edge computing networks also have a similar setting.
Although these systems may need professional teams for the
deployment since their devices typically require configuration,
our five lessons learned on quantifying system gain, scale
evolution, and performance metrics (e.g., lifetime, reliability,
and utility) may reduce their indoor operation efforts.

6 Related Works
Table 6: Operational BLE Device Systems

.
Nation Deployment Site Application Scale
Iceland Eldheimar museum [34] Localization 54 devices

U.S. Beale Street [48] Presence detection 100 devices
U.K. Gatwick airport [21] Localization 2,000 devices
India Railway station [18] Presence detection 2,000 devices
Brazil Tom Jobim airport [4] Localization 3,000 devices

Operational BLE Device System: To our knowledge, as we
are proposing one of the largest BLE device systems in the
world, it is worthwhile to give a summary of existing opera-
tional BLE device systems. As shown in Table 6, most BLE
systems are operated in public sites such as airports or muse-
ums for presence detection or indoor localization. The largest
BLE system we found is deployed in Tom Jobim airport in
Brazil with 3,000 devices, which is fewer than the 12,109
devices in aBeacon we deployed in Shanghai, China. More
importantly, these existing systems are operated in a con-
trolled environment (e.g., airports, museums, train stations),
but our operating environment is in the wild and out of control.
It enables our system to provide some new insights from our

lessons learned from large-scale system lifetime, reliability,
utility, and cost.

BLE Device Studies: Existing BLE system studies can be
categorized according to their applications: localization or
presence detection. Indoor localization with BLE systems is
similar to works done with Wi-Fi. Fingerprinting is studied
in [19] to achieve the accuracy of < 4.8 m at the density
of one device per 100 m2, compared with < 8.5 m for Wi-
Fi. Map matching is used in [56] to estimate a user’s route
based on devices with known locations. 1,600 BLE devices
are deployed in all the classrooms and corridors of an insti-
tute for evaluation. Dynamic RSSI propagation modeling is
proposed in [12] to achieve fine-grained (< 2 m) localization
and tracking. There are also studies exploring the proximity
information provided. Dining hall usage and student check-in
are studied in [38] and [24] with BLE device proximity infor-
mation. Hardware modifications such as energy harvester are
also studied in [28] for better performance.

Real-world Sensing Systems: Another related topic is the
large-scale real-world sensing system. These studies lay more
emphasis on the system implementation and operation for
practical problems. LiveTag is proposed in [22] to sense
human-object interaction passively. [51] attempts to answer
why RFID sensing systems remain research prototypes and
have not been widely deployed in practice with theoretical
analysis and real-world experiments.

7 Conclusion
This paper introduces aBeacon, a wireless indoor BLE device
system in Alibaba, from its conception to its retirement by a
unique operation study in Shanghai. We quantify aBeacon’s
performance by scale, lifetime, reliability, and utility, for all
of which we provide some new insights obtained in our 3-year
system operation in the wild. In particular, we built aBeacon
from the ground up in a metric-based approach consisting
of two phases, i.e., an 8-month pilot study and a 28-month
deployment and operation in the wild, including devices in
12,109 merchants and interactions with 109,378 couriers.
From the long-term city-wide study, we identify five key ob-
servations and lessons regarding system gain quantification,
system scale evolution, lifetime, reliability, and utility in the
wild. We believe these in-depth lessons learned have impli-
cations for other systems requiring long-term operations and
broad geospatial coverage such as 5G and Edge Computing.
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