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For an online delivery platform, accurate physical locations of merchants are essential for delivery scheduling. It is challenging 
to maintain tens of thousands of merchant locations accurately because of potential errors introduced by merchants for 
profits (e.g., potential fraud). In practice, a platform periodically sends a dedicated crew to survey limited locations due to 
high workforce costs, leaving many potential location errors. In this paper, we design and implement ALWAES, a system 
that automatically identifies and corrects location errors based on fundamental tradeoffs of five measurement strategies 
from manual, physical, and virtual data collection infrastructures for online delivery platforms. ALWAES explores delivery 
data already collected by platform infrastructures to measure the travel time of couriers between merchants and verify all 
merchants’ locations by cross-validation automatically. We explore tradeoffs between performance and cost of different 
measurement approaches. By comparing with the manually-collected ground truth, the experimental results show that 
ALWAES outperforms three other baselines by 32.2%, 41.8%, and 47.2%, respectively. More importantly, ALWAES saves 3,846 
hours of the delivery time of 35,005 orders in a month and finds new erroneous locations that initially were not in the ground 
truth but are verified by our field study later, accounting for 3% of all merchants with erroneous locations.
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1 INTRODUCTION
Online instant delivery is an emerging business for Gig Economy [38] that online orders (e.g., food) are delivered 
by Gig workers (e.g., couriers) from merchants (e.g., restaurants) to customers within a short time (e.g., 30
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minutes). This business grows rapidly with the emergence of several online instant delivery platforms worldwide,
e.g., Prime Now [4], UberEats [60], Instacart [37], and DoorDash [20] in the U.S.; Deliveroo [16] in the U.K.;
Meituan [18], JD [58], and Eleme [68, 72] in China. On such a platform, merchants’ physical locations are essential
to assign orders to the most suitable couriers to finish the delivery before the promised time to avoid an overdue
[18, 68, 72].
In practice, these merchant locations are usually registered by the merchants themselves and are not always

correct. Some wrong location records may be by manual errors or merchant re-locations, while others are due
to intentional manipulations. For example, a merchant registers its location in a large shopping mall, which
typically implies a better service and a higher food quality [8] compared to a residential area [35]. As a result,
some merchants may intentionally register a wrong location (e.g., in a mall) to attract more online consumers
who do not have to go in person and only need a courier to pick up the order. We call such location registrations
location frauds.

This kind of location frauds persists because most couriers are part-time and lack the incentives to correct them
proactively. First, when couriers arrive at the merchant’s wrong location for the first time and cannot find the
merchant, they would call the merchant and find out the real place and then go there to pick up the order. Second,
the merchants who are conducting location frauds may also actively call the couriers to go to the real location by
claiming that they just moved as long as they know who the couriers are in the merchant app. Next time, these
couriers may directly go to this real location when getting an order to pick up from the same merchant.
A naive solution for the platforms is to ask the couriers to report wrong locations, but this is not effective in

practice because (1) average couriers lack incentives for reporting because their main job is delivering (e.g., 25
orders per day); (2) some malicious couriers could even collude with merchants. For example, there are more
than 8 million registered couriers nationwide on the platform we are working with in China. Most of them are
part-time couriers with little incentive to report errors. These location frauds significantly impact online delivery
platforms because of resultant inappropriate courier scheduling, deviated courier’s routes, and unnecessary
overdue compensations to customers, as shown in Sec.2.2. Thus, the platforms need to identify these location
frauds and then find their real locations.
The state-of-the-art technical solutions for location frauds can be roughly classified into two categories:

the dedicated and crowdsourcing approaches. For the dedicated approaches, the platforms hire professional
investigators to conduct field studies, collect new data [54], and verify the merchant locations one by one. But these
dedicated approaches are labor-intensive and too expensive on a large scale. In contrast, for the crowdsourcing
approaches, some already-collected location data from ordinary users of a system (e.g., navigation apps) are
explored to identify potential location frauds (e.g., GOLD panning [3]) under some incentives from platforms; but
gathering large-scale location data requires significant financial incentives[39].
In this paper, we explore a different technical approach that leverages the opportunities offered by the order

update data collected on the online delivery platform. In an order delivery service, the order update data log
the spatiotemporal records of four major events of the delivery (details in Sec.2) to notify customers of the real-
time order status. These spatiotemporal records are obtained by three infrastructures, i.e., courier smartphones,
physical check-in beacon devices, and virtual check-in beacon devices (embedded in merchant smartphones under
their consent). We explore different tradeoffs of their cost and reliability detailed in Sec. 3. These measurements
will reflect how long it takes for couriers to travel among merchants. These travel time can be used to validate if
one or more merchants’ locations may be erroneous, and if so, what are the real locations.

What makes these spatiotemporal records from order update data interesting are their strengths and weaknesses
to detect location frauds.

• The key strength is that they are obtained automatically and cover our platformmerchants without couriers’
additional efforts.These records are mandatory for platform accounting; hence they can detect location
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frauds for “free”. Note that we only use the data already collected from couriers for accounting under their
consent, and do not use the platform customer data. Even though couriers’ data have been used in recent
work such as TransLoc[64], which corrects the couriers’ indoor location by modeling uncertainty for an
online delivery platform. However, these work assumed that all merchants’ registered locations are correct
so they can correct courier locations, which is not true in practice.
• The key weakness is the uncertainty of couriers’ mobility behaviors. For example, couriers may travel
between the same merchants on different routes while visiting other places during the process, which
cannot be explicitly measured by the order status data or even known to the platform, given the delivery
sequence of multiple orders at couriers’ discretion.

To explore both their strengths and weaknesses, in this paper, we design ALWAES, an Automatic Location-
aWArE correction System based on the spatiotemporal measurement results from online delivery platform
infrastructures for outdoor merchants. We implement and evaluate ALWAES on a real-world online delivery
platform to show its practical impacts. To summarize, our main contributions in this paper are as follows.
• To our knowledge, we conduct the first work to explore order status measured by the infrastructure of
online delivery platforms to identify and correct outdoor merchant location frauds automatically. We
demonstrate the feasibility of automatic location fraud identification and correction by designing the
ALWAES system. ALWAES explores real-world order status data from our online delivery platform in
Shanghai, including 10,821,351 orders delivered by 23,604 couriers for 2,897,080 customers during 85 days.
We will release one month of the data used, including BLE sensing, and manual report data, after we can
reveal our identity to benefit the IMWUT community1. The data is prepared to be anonymous with panned
date information to protect privacy.
• We explore three kinds of infrastructures with different performance and cost tradeoffs for five spatiotem-
poral measurement strategies for order update data collection, including (1) couriers’ smartphones only to
report order status manually; (2) dedicated physical beacon devices to report order status automatically;
(3) merchant smartphones as virtual beacon devices to report order status automatically. We process the
order status collected from these three infrastructures as unified spatiotemporal measurement records for
four order delivery events. We build a travel distance model based on machine learning techniques with
couriers’ correlated mobility features to address the uncertain mobility behaviors between these events.
We design a graph-based multi-iteration algorithm to localize all merchant locations as if we did not know
their locations. Finally, we compare the locations we infer and the locations registered by merchants to
identify the potential location frauds.
• To explore the pros and cons of three infrastructures, we evaluate ALWAESwith five different spatiotemporal
measurement strategies for order status data from 23,604 couriers’ phones, 3,200 physical check-in devices,
and 2,790 virtual check-in devices in Shanghai. Compared to three baselines, the experimental results
show that ALWAES improves the location fraud detection and corrections by 32.2%, 41.8%, and 47.2%,
respectively, in terms of AUC given manually collected ground truth. For different measurement strategies
within ALWAES, we found physical check-in devices combined with merchants’ smartphones perform the
best. More importantly, ALWAES has real-world impacts by saving 3,846 hours of the delivery time for
35,005 orders in a month and identifying eight location fraud merchants that are not in the ground truth
but were verified by our field studies.
• We summarize some key insights on the different infrastructures (Details in Sec.6). (1) The accurate timing
from physical devices outperforms all the other approaches in ALWAES but with an extra deployment cost.
(2) The less-expensive virtual devices with only software development can achieve similar performance to

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=107267
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physical devices in our system to save cost but need a high merchant participation rate. (3) The implicit
and inaccurate couriers’ manual input timing is helpful in ALWAES to avoid an extra hardware cost or
participation dependence, with an inevitable reduction in accuracy compared to explicit timings from
physical or virtual devices.

The rest of the paper are organized as follows. Sec. 2 presents the motivation for our work. Sec. 3 shows systems
and data we used. Sec. 4 gives the details of ALWAES. Sec. 5 evaluates the performance, along with some
discussions in Sec. 6. In Sec. 7 we review the related work. Sec. 8 concludes our work.

2 MOTIVATIONS

2.1 Online Delivery Platform
2.1.1 Platform Components. There are four basic components of an online delivery platform: a customer orders
a merchant’s goods or meals online (e.g., smartphone apps or websites) through a digital platform (i.e., the online
delivery service provider); a courier is assigned by the platform to pick up this order at the merchant and then
deliver it to the customer. If the customer receives goods/meals later than a time limit, e.g., 30 minutes, an overdue
occurs, and then the platform will compensate the customer for missing deadline. Couriers in dense urban areas
usually prefer electric bikes (e-bikes) instead of cars to avoid traffic jams.

2.1.2 Order Update Data. During a delivery process, the platform will track the real-time status of the order,
namely order update data, and log them for accounting and show them to customers for better customer experi-
ences. An order update record logs four major events related to a courier from an order being placed until the
order being delivered, (1) accepting the order, (2) arriving at the merchant, (3) departing from the merchant (with
orders), and (4) delivering to the customer. We list the fields we use in this paper in Tab. 1.

Table 1. Order Update Data Format and Example

Field Value
Order/Courier/Merchant ID O001/C001/M001
Registered Merchant Location 116.418065, 39.916998
1. Acceptance Time & Loc 18-01-01 12:00:00 & GPS
2. Arrival Time & Loc 18-01-01 12:10:00 & GPS
3. Departure Time & Loc 18-01-01 12:10:10 & GPS
4. Delivery Time & Loc 18-01-01 12:25:00 & GPS
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Fig 1. Orders During a Day

In our analysis, we found that a courier normally picks up multiple orders from different merchants altogether
and then delivers them to customers one by one, given the large number of orders they deliver per day, especially
during peak hours. Fig. 1 shows the number of orders during different slots of a day in Shanghai. Based on the
departure time of one order and the arrival time of the next order, we obtain the travel time among merchants.

2.2 Locations Frauds and Their Impacts
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Fig. 3. OrderQuantity in aMonth
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Fig. 4. Merchant Lifetime

2.2.1 Location Frauds and Why They Exist.
In practice, the merchants locations are regis-
tered manually by the merchants themselves (e.g.,
adding a text address, uploading mobile devices’
GPS location or picking a point on the map) and
transformed into geographic coordinate by our
system (e.g., the registered location by McDon-
ald’s (Wangfujing Street, Beijing) is “116.418065,
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(b) Location Error Distribution (c) Merchants’ Order Quantity (d) Average Detour Distance
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(a) Location Fraud Example

Real Location of
Merchant A

Registered Location 
of Merchant A

Merchant C

Merchant B

Fig. 2. Impact of Location Frauds. (a) shows an example of location fraud. The red solid dot is the registered location of a
merchant A; whereas the red hollow dot is its real location. When there is a new order for this Merchant A, if the platform
knows there are two couriers in Merchant B and C, respectively, under this location fraud, the platform will mistakenly
dispatch the courier at C but the courier at B is actually closer. (b) shows the distances between registered and real locations
of the merchants we identify with potential location frauds based on our field studies. Over 36% of these merchants drift more
than 500 meters; (c) shows the number of orders per month for merchants with different errors. We found that merchants
with erroneous locations have a similar amount of orders as ones with correct locations (i.e., with 0km error), implying that
they are equally important and treated in the online delivery system; To quantify their impact, (d) shows the relation of the
merchant location errors against the courier detour distance of individual orders caused by erroneous locations.

39.916998”). As a result, the merchants’ locations are easy to falsify manually. Fig. 2(a) gives a real example of
merchants with a severe location error.
The goal of fraud merchants is to register a wrong location for attracting more online consumers who do

not have to go in person and only need a courier to pick up the order. For example, a merchant registers its
location in a large shopping mall which typically implies a better service and a higher food quality [8] compared
to a residential area [35]. As a result, shops in a mall will have more orders, as shown in Fig. 3 which compares
the order quantities between shops in the shopping mall and in the residential area. Intuitively, the merchants
should care about long-term reputation to avoid any frauds and resultant consequences. However, we found in
our platform, the lifetime of merchants is rather short due to the convenience and low-cost of registering an
online shop in a platform. The CDF of merchant lifetime on our platform is in Fig. 4. Around 74% of merchants
left the platform within 1 year but the chain stores typically have a longer lifetime. This is a rather interesting
phenomenon for online shop lifetime, but a detailed study is out of scope of this work and worth its own study.
Further, a platform rarely fines or bans the merchants with potential location frauds in practice because it is hard
to prove the fraud and it hurts the platform’s market share. We believe these are two core reasons for location
fraud.

2.2.2 Attack Model. In our attack model, we consider three versions that the merchants registers the wrong
location. Adversarial merchants want to attract more online orders through location frauds. They may get 665
orders on average per month during location fraud and only 521 orders on average in real locations based on the
field studies (details in Sec. 3.3). (i) Individual attack. An adversarial merchant conducts location frauds on his/her
own. In this case, when couriers arrive at the merchant’s wrong location for the first time and cannot find the
merchant, they would call the merchant and find out the real place and then go there to pick up the order. The
merchant may also actively call the couriers to go to the real location. They would claim they recently moved and
did not update their locations in the platform yet. Next time, these couriers may directly go to this real location
when assigned with an order to pick up from the same merchant. (ii) Collusive attack. An adversarial merchant
colludes with couriers by providing some monetary incentive to the couriers, so they can work together against
the platforms even though the platform may ask the couriers to report the wrong locations[2, 15]. This kind
of frauds persists because most of the couriers are part-time with little incentive to report errors given many
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platforms currently do not provide any monetary incentive to motivate couriers to report. (iii) Collective attack.
Some adversarial merchants close to each other register the wrong yet close locations collectively.

2.2.3 Impact of Location Frauds. Merchants with location frauds make both new and experienced couriers take
detours of several kilometers to pick up orders, which impacts the platform’s efficiency significantly. It also
compromises the platform’s credibility on the delivery time estimation, which lead to poor customer experience.
Moreover, location frauds are not rare. Fig. 2 (b-d) show the scale and impacts of location errors based on
real-world data.

2.3 Opportunities
2.3.1 Key Idea: Correlation between Travel Time and Distance. Our solution to detect location frauds is based on
a simple yet effective idea. The travel time between a pair of consecutively visited merchants should be proportional
to the travel distance between them for large-scale merchant pairs. Based on this correlation, we can estimate the
travel distances between any two merchants using the travel time.

2.3.2 From Travel Distances to Location Frauds. We compare two distances: the travel distance estimated by
Real Location 

of A Registered
Location 
of A

Registered
Location of B

Registered
Location 

of C

Fig. 5. Distance Vs. Time

arrival time captured by platform infrastructure (detailed in Sec.3) for order status,
and the travel distance estimated by registered locations provided by merchants. If
their difference is significant, at least one of them is wrong. Compared to the distance
obtained by registered locations, the distance obtained by the arrival time is more
likely to be correct because the platform invests significant effort (Sec.3) to collect
arrival time for accounting. Thus, in our detection, we (1) use arrival time from order
status data (as in Tab. 1) to infer travel time between any two merchants; (2) use travel
time between any two merchants to infer travel distance between any two merchants;
(3) use travel distance from one merchant to nearby merchants to cross-validate if
this merchant has a suspicious registered location, i.e., location fraud. An updated example of Fig. 2(a) is given in
Fig. 5. Based on three merchants A, B, and C with their registered locations and travel time between them, we
found that (1) the travel time between A and B is much shorter than it should be; (2) the travel time between A
and C is much longer than it should be; (3) the travel time between B and C is similar to it should be. As a result,
we infer the registered location of Merchant A could be wrong. By a field study, we found out its real location at
the hollow circle, which explains the abnormal travel time between them.

2.3.3 Foundation of Detection: Data Volume and Merchants Density. Although the abnormal travel time could be
because of various personal and environmental factors such as couriers’ preference rather than location fraud,
we assume most carriers take the shortest routes to deliver orders based on previous studies[64]. As a result, our
idea (i.e., the correlation between time and distance) is based on large order volumes and dense merchants. As
in Fig. 6 and 7, 58% merchants have 300+ orders per month, and 73% of them have 30+ merchants in 5 km in
Shanghai. This high density inspires us to cross-validate locations for detection.

2.4 Technical Challenge
The key challenge we aim to address is the uncertainty of couriers mobility behaviors. Fig.8 plots the travel
distances and the travel time for 1,000 orders. The diagonal is the normal walking speed, i.e., 1 meter per second;
the red dotted line is the regressed linear function. Both of them cannot represent the relationship well. The
mobility behaviors of couriers, e.g., travel speeds and routes, are affected by many factors, e.g., the remaining
time to overdue, and couriers’ transportation modes (walk or e-bikes). As a result, even for a fixed merchant
pair, the travel time is unstable. We draw the CDF of the standard deviations for travel time between the same
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merchant pairs in Fig. 9. More than 50% of merchant pairs have the travel time variations larger than 244 seconds,
accounting for 14% of a typical order delivery time (30min). It brings a significant challenge for our system.

3 SYSTEMS AND DATA

3.1 Order Status Data Collection Systems
Order status data shown in Tab. 1 are significant to the platform because they are used for the platform’s new
order assignment, and are also shown to customers in real time to improve customers’ experiences. While the

19.4% between
-1 and 1 minute

36.3% >5 minutes

Fig. 10. Inaccurate Reporting

order status data are collected for the platforms’ daily management and
accounting, location fraud detection becomes an interesting “side product". In
most online delivery platforms, these data are collected manually with lots of
errors. In our platform, we deploy both physical and virtual check-in devices
to automatically collect the order status data. We introduce these three data
collections below.
(1) Manual Collection based on Courier Smartphone Only Based on the

platform policy, couriers are obligated to report the order status manually
during delivery. However, these reports are often inaccurate. We compare
the reported arrival time and the actual arrival time (collected from beacon
devices) in Fig. 10. It shows that only 19.4% of order reports are accurate, and 36.3% of them have been reported
in advance for more than 5 minutes (accounting for 17% of the whole order delivery time). There are multiple
incentives for couriers to report early including avoiding overdue responsibility and gaming order scheduling.
Couriers also forget to report progress sometimes, which leads to very late reporting. The uncertainty of couriers’
behavior brings inaccurate timings.
(2) Automatic Collection based on Physical Check-in Beacon System To automatically obtain the timing of

couriers’ arrival at and departure from merchants, our team (i.e., the platform) has designed and deployed 3,200
beacon devices in Shanghai. Fig.11 visualizes such a beacon device deployment, where each merchant is equipped
with one beacon device. These devices have basic communication capability but no GPS capability due to the
energy and cost concerns. They are mailed to or picked up by the merchants, who will register the locations of
installed beacon devices, which could be a fraudulent location. Since these deployed beacon devices whose IDs
are one-to-one correspondence with merchant IDs, the arrival and departure timings are straightforward and
automatic for couriers. A courier’s smartphone detects the beacon message constantly broadcast by physical
beacon devices when in proximity. Then, couriers’ smartphones upload the timestamp and the beacon device’s
ID to the server, which implies the courier is around the merchant with this beacon device, so an arrival time
was recorded for this courier. In our designs, we add energy management schemes to ensure beacon devices can
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survive more than two years without changing batteries. Additional security mechanisms have been also designed
to avoid free-ride. However, the large-scale physical beacon system is labor-intensive and cost-ineffective (10
USD per device).

65km

Physical Beacon 
System’s Heatmap

Merchant

Physical Beacon

Fig. 11. Physical Beacon System Deployment

Virtual 
Beacon 

65km

Virtual Beacon 
Systems’ Heatmap

Merchant

Fig. 12. Virtual Beacon System Deployment

(3) Automatic Collection based on Virtual Check-in Beacon System To reduce the cost, our team also deployed
a virtual beacon system that is part of the smartphone app of merchants. The app is used by merchants to manage
the orders received on the platform. As in Fig. 12, the virtual beacon broadcast module is added to the merchants’
app under merchants’ consent in Shanghai. When a courier approaches a merchant, her smartphone will receive
the virtual beacon messages generated by the merchant’s smartphones. The mechanism of timing collection
is the same as the physical beacon device we mentioned above. The virtual beacon message does not include
continuous GPS tracking to protect the privacy of merchants but has a dynamic ID, so the merchant can be
mapped based on merchant IDs on the server for couriers’ arrival detection.

3.2 Temporal Data Collection
Based on the data collection system, we introduce the collection of temporal data T1 to T3 as follows. Note that
all the three data collection infrastructures are in use simultaneously. Physical and virtual beacon devices are in
the testing stages for replacing couriers’ manual report of order status.
• T1: Manual Timing Data from Couriers’ Input (Man) In manual data collection, the platform requires
couriers to mark their arrival and departure at each merchant in the couriers’ app. The timestamps will be
uploaded to the platform server at no additional hardware cost.
• T2: Physical Beacon Timing Data (Phy) Based on the records (uploaded by courier smartphones) with
beacon devices (i.e., the timestamps and beacon ID), we obtain the exact timing when a courier passes through
a merchant automatically. When a courier passes a merchant, she may receive multiple beacon messages. We
select the first and last timestamps from the same beacon to the same courier. The first timestamp is regarded
as the courier’s arrival and the last one as the departure.
• T3: Virtual Beacon Timing Data (Vir) The way of obtaining the timing from virtual beacon devices is the
same as the physical beacon devices. To effectively compare the performance, we only use the data of virtual
beacon devices whose merchants also have physical beacon devices in the evaluation. Note that some merchants
use PC to manage orders, so we cannot use their smartphones as virtual devices. Some merchants also do not
want to participate, so we do not consider them.

3.3 Spatial Data Collection
There are three approaches (L1-L3) to obtain the couriers’ locations given the arrival/departure timing with
uncertainties. Note that in our setting, given the timing of arrival, a courier’s location is the merchant location.
The ground truth of the merchant location (L3), e.g., the real location, may not be the location obtained by either
of two approaches.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 107. Publication date: September 2021.



ALWAES: an Automatic Outdoor Location-Aware Correction System for Online Delivery Platforms • 107:9

• L1: GPS Locations of Couriers (GPS) A GPS record is obtained when a courier reports arrival or departure
on her app (i.e., manual timing collection), or detected a beacon message (i.e., automatically timing collection
with physical or virtual beacon devices). However, GPS in urban areas is often inaccurate[56], and some couriers
have GPS modification software to change their GPS locations to game the platform’s accounting system[30].
• L2: Registered Locations of Merchants (Reg) These locations are obtained by matching the merchant IDs
uploaded by couriers (either from manual report or beacon devices detected) with the merchant IDs in the
databases. Each merchant ID has a unique location registered by the associated merchant.
• L3: Ground Truth of Merchant Locations Our platform has a field study team to periodically visit some
merchants with abnormal orders. During this process, the ground truth of erroneous locations is collected
manually but with a high labor cost. The ground truth gives the real locations of the merchants in Tab. 2.

Table 2. Ground Truth Format and Example

Field Value
Merchant ID M001
Registered Location 116.418065, 39.916998
Real Location 116.431181, 39.914571

Based on the ground truth, there are over 93 merchants of all
3,200 merchants with both physical and virtual beacon devices
in Shanghai with significant location errors, accounting for 2.9%
of all 3,200 merchants. The location distribution of erroneous
merchants is basically consistent with the correct ones, covering
both urban and suburban areas. We observed a typical fraud that
some merchants intentionally claim to be located in a large shopping mall to attract more online consumers
because merchants in malls implies better qualities. The common unintentional error is that the merchant
registered her address with similar but wrong mall or street names by mistakes. Because two addresses with
similar names may be far away, this kind of mistakes leads to server errors in practice. Although the ratio of
identified frauds among all merchants is small, the total amount is significant due to a large number of merchants.

4 ALWAES DESIGN

Spatial Measure

•Manual Inputs (Man)
•Physical Beacon (Phy)
•Virtual Beacon (Vir)

Data Combination & 
Feature Extraction (Sec. 4.2)

Distance 
Estimation
(Sec. 4.2)

Spatiotemporal & Personalized 
Features (Sec. 4.2)

Localization
& Clustering

(Sec. 4.3 & 4.4)

•Registered Loc. (Reg)
•Couriers’ GPS (GPS)
•Ground Truth

Temporal Measure Spatial
Temporal 
 Combina.
•Reg+Man
•Reg+Vir
•Reg+Phy
•GPS+Phy
•GPS+Man

(Sec. 4.1)

Fig. 13. Overview of ALWAES

In this section, we present the design of ALWAES system that explores these temporal and spatial data to
identify the location frauds and infer the real locations. Fig. 13 gives an overview of ALWAES. With the temporal
and spatial data collected (Sec.3), ALWAES explores different combinations on spatiotemporal measurements
that lead to different tradeoffs on performance and cost (Sec.4.1). For any of these combinations, we can train a
travel distance model that helps to estimate the travel distance between nearby merchants (Sec.4.2). We then
localize the merchants based on these distances and compare them with their registered locations to detect frauds
(Sec.4.3). As couriers usually travel within small areas, we partition the merchants into small clusters that are
geographically close to each other in the first step (Sec.4.4). This step can filter out some noise and simplify the
merchant localization process.
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4.1 Spatiotemporal Measurement
To evaluate the performance of ALWAES in different settings, we generate five measurement combinations in
the spatiotemporal dimensions mentioned above, as shown in Fig. 14, and explore the tradeoffs of them in Tab. 3.

Table 3. Measurement Strategy Comparison

Implemet. Performa. Cost Density
1○Reg+ManManual Inaccurate Cheap Sparse
2○Reg+Vir Automatic Accurate Cheap Medium
3○Reg+PhyAutomatic Accurate Expensive Dense
4○GPS+PhyAutomatic Accurate Expensive Dense
5○GPS+ManManual Inaccurate Cheap Sparse L1(Couriers’ GPS) L2(Registered Location)

L3(Ground Truth)

T1(Courier smartphone) T2(Physical beacon) T3(Virtual beacon)

!Reg+Man

Time

Space

"Reg+Vir

#Reg+Phy

$GPS+Phy

%GPS+Man

Fig. 14. Demonstration of Measurement Combinations
1○ Reg+Man. It utilizes theManual input order status records (T1) and merchant Registered locations (L2),
which may introduce manual errors of couriers (e.g., early or late reports) and thus the timings can be inaccurate.
2○ Reg+Vir. It utilizes the records with Virtual beacon devices (T3) and merchant Registered locations (L2).
Couriers usually pass by multiple merchants when picking up orders from different merchants, so the timing
records with beacon devices are denser than Reg+Man. As a result of automatic recording, the timings are
accurate.
3○ Reg+Phy. It utilizes the records with Physical beacon devices (T2) and merchant Registered locations (L2).
For the same reason as Reg+Vir, the timings are accurate. Compared with Reg+Vir where virtual beacon devices
depend on merchants’ smartphones, the density of physical beacon devices (i.e. Reg+Phy) is potentially higher
because all the merchants in the evaluation have physical beacon devices, but virtual beacon devices only exist in
the merchants that use smartphones to manage orders. The cost of Reg+Phy is highest given the hardware cost
and labor-intensive deployment, but no maintenance cost is needed after deployment.

4○ GPS+Phy. It utilizes recorded timings with Physical beacon devices (T2) and couriers’ GPS locations (L1).
Similar to Reg+Phy, the data collection of GPS+Phy is expensive due to physical beacon devices. Further, GPS+Phy
needs GPS locations as extra information compared to Reg+Phy. Due to security and privacy concerns, GPS is
not an attractive solution in many crowdsourcing applications. As a result, Reg+Phy is easier to implement than
GPS+Phy.
5○ GPS+Man. It utilizes couriers’ GPS locations (L1) and Manual input timings (T1). Similar to Reg+Man with
manual input, the timings of GPS+Man are less accurate than GPS+Phy. While it is cheaper to collect than
GPS+Phy, it needs GPS compared with Reg+Man, which leads to privacy issues and can be manipulated[56] or
even attacked, e.g., by GPS spoofing[30], resulting in severe location fraud issues.
4.2 Distance Estimator
Based on these five measurement strategies, we show how to estimate the travel distances between merchants
based on the travel time and related features. Note that our estimator works with any of these five measure-
ment data as input, given their inherent homogeneous spatiotemporal measurement nature. We evaluate the
performance of our estimators with different measurement data in Sec.5.
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4.2.1 Feature Extraction. The travel distances are related to different types of features, e.g., temporal, spatial,
and personalized. Temporal features reflect the primary time-related information, including the travel time, peak
hours, the latest delivery time, etc. Spatial features reflect the geographical factors, including the number of orders
per unit area, delivery difficulty, etc. Personalized features reflect the courier’s behaviors and preferences such as
the number of carried orders, the number of overdue orders in history, and history travel distance.
To identify the most impacted ones, we adopt a series of standard feature selection algorithms in literature

[10, 29, 31]. We first remove the features with low variances to reduce the number of features to avoid “curse of
dimensionality” We use mean decrease accuracy[32] (i.e., the decrease in the model accuracy from permuting the
values in each feature) to score the feature importance. These scores weighted equally in assessments. As a result,
we keep the 32 most impacted features. More details of the feature selection techniques are given in [10, 29, 31].
The full list of features is given in Tab. 4. Given these features, we estimate the distances between merchants
with a distance model.

Table 4. Feature List

Temporal: travel time, peak hours, longest delivery time, minimal estimated travel time, historical and
averaged delivery time, team history deliver time, to promise delivery time, time slot, merchant history
cook time, merchant history time of picking up goods, merchant history deliver time, grid average cook
time, grid average time of picking up goods, grid average deliver time
Spatial: delivery difficulty, rate of delayed products, merchant popularity, number of orders and finished
orders in the last 30min, shopping mall ID, number of orders per unit area, grid delivery difficulty, grid
history deliver time per kilometer, the density of couriers in the area
Personalized: number of carried orders, courier’s passion, number of overdue orders, accept orders time
of the courier, average history travel distance, courier grade

4.2.2 Distance Model and Methodology Choice. With these 32 carefully selected features, we build a distance
model based on the Gradient Boosting Decision Tree (GBDT) [27], a widely adopted machine learning algorithm.
The main reason we build our distance model based on GBDT is that compared with models such as logistic
regression and SVM, GBDT is able to learn the nonlinear relationship between features and labels, which adapts
to our problem. As a decision tree model, GBDT can explain the feature importance, which sheds the light on the
couriers’ mobility behavior patterns. We use Mean Absolute Error(MAE) as the loss function in optimizations.
Map Travel Distance as Labels. We use the travel distances calculated in the map app, called “map travel

distance” dmap (p, q) as labels. Considering the different travel modes for different travel distances (e.g., on foot or
e-bike), we train two models: one for on-foot with shorter distances (e.g. < 100𝑚), and the other for e-bikes with
longer distances (e.g. ≥ 100𝑚). We set 𝑑bike as the threshold for long distance. As couriers in China rarely drive a
car to deliver orders, we did not consider the third model for vehicles.

Model Travel Distance as Output. The travel distance obtained by our model between two merchants 𝑝 and 𝑞
is called the “model travel distance” dmodel (p, q).
4.3 Merchant Localization
Given the model travel distances between merchants in the previous subsection, we localize each merchant and
check whether it deviates from the registered location significantly.
4.3.1 Setting. For a merchant with a registered location q∗, called “target merchant” (the registered location
but could be fraudulent), suppose we are given a set of nearby merchants P = {𝑝𝑖 , 𝑖 = 1...𝑁 } called “reference
merchants”. 𝑑model (𝑝𝑖 , 𝑞∗) is the model travel distance from 𝑞∗ to 𝑝𝑖 from the distance estimation model. Our goal
is to compute a location q̂ based on the locations of these reference merchants P and 𝑑model (𝑝𝑖 , 𝑞∗). We then
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compare this computed 𝑞 with 𝑞∗ to see if they differ significantly, e.g., >200m. This procedure is conducted
for each merchant in turn. In other words, every merchant will be the target merchant for one time and be the
reference merchant for its nearby ones.

!"

#$

#"

!% !$

!&

Fig. 15. Road Network

Specifically, let G = (V, E) represent the road network where 𝑉 is the set of road
intersections and 𝐸 = {𝑒𝑣1,𝑣2 : 𝑣1, 𝑣2 ∈ 𝑉 } is the set of road segments. Given two
merchants 𝑝1 and 𝑝2, 𝑑map (𝑝1, 𝑝2) is the map travel distance in between. In Fig.15,
𝑑map (𝑝1, 𝑝2) is equal to 𝑑map (𝑝1, 𝑣1) + |𝑒𝑣1,𝑣2 | + 𝑑map (𝑣2, 𝑝2) where |𝑒𝑣1,𝑣2 | is the road
length. Here𝑑map (𝑝1, 𝑣1) is the edge length |𝑒𝑝1,𝑣1 |. In this paper, we assume the shortest
route when computing the map travel distance because couriers seldom take longer
routes. Thus in the example of Fig.15, 𝑑map (𝑝1, 𝑝2) is for the route (𝑝1, 𝑣1, 𝑣2, 𝑝2) but
not (𝑝1, 𝑣4, 𝑣3, 𝑝2).

Given a set of referencemerchants (𝑃 = {𝑝𝑖 }) andmodel travel distances𝑑model (𝑝𝑖 , 𝑞∗), themerchant localization
problem is to find a 𝑞 that minimizes the difference between the model travel distances 𝑑model (𝑝𝑖 , 𝑞∗)) and the
map travel distances 𝑑map (𝑝𝑖 , 𝑞) for all 𝑝𝑖 ∈ 𝑃 , i.e.,

𝑞 = argmin
𝑞

∑
𝑝𝑖 ∈𝑃
(𝑑map (𝑝𝑖 , 𝑞) − 𝑑model (𝑝𝑖 , 𝑞∗))2 (1)

This optimal 𝑞 should be close to the registered location 𝑞∗. If not, we identify it as a suspicious merchant for
manually verification. Considering our problem is based on the travel distances that merchants are constrained
on the road network, we name it as "Graph-based Multilateration".

4.3.2 Segment Search Algorithm. To find the solution of the Graph-based Multilateration problem, i.e., the 𝑞
in Eq. 1, we design a segment search algorithm as shown in Algo. 1. The basic idea is to scan all the road
segments, and for each road segment, we search the optimal location. The solution in Algo. 1 is globally optimal
in polynomial time, which makes it scalable for periodical large-scale detection, e.g., once per day or per week, to
reduce or minimize the delay to detect a fraud. We omit the detailed proof due to the space limitation but show
some key ideas. In short, Eq. 2 is a convex function about 𝑥 (𝑑 (𝑢, 𝑥)), and thus it can be directly solved by Newton
method. The iterations are invoked for each edge 𝑒 , so the computation complexity of the algorithm is O(|𝐸 |),
i.e., polynomial.

Algorithm 1: Merchant Localization
Input: Road network 𝐺 = (𝑉 , 𝐸); Reference merchants 𝑃 = {𝑝𝑖 }; Model travel distance 𝑑model (𝑝𝑖 , 𝑞∗)
Output: A location 𝑞

1 min_g←∞
2 for ∀𝑒𝑢,𝑣 ∈ 𝐸 do
3

𝑔(𝑞) =
∑
𝑝𝑖 ∈𝑃

min{(𝑑map (𝑝𝑖 , 𝑢) + 𝑑map (𝑢, 𝑞) − 𝑑model (𝑝𝑖 , 𝑞∗))2,

(𝑑map (𝑝𝑖 , 𝑣) + 𝑑map (𝑣, 𝑞) − 𝑑model (𝑝𝑖 , 𝑞∗))2}
(2)

4 𝑞= arg min
𝑞∈𝑒𝑢,𝑣

𝑔(𝑞)

5 if g(q) < min_g then
6 min_g=𝑔(𝑞), 𝑞 = 𝑞
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4.4 Merchants Clustering
Intuitively, only nearby merchants are helpful to mutually verify the correctness for each other. Distant merchants
have few courier’s travels in between and provide little information. More importantly, long travels may introduce
greater variation noise to the data. Therefore, we run the distance model and localization algorithm only locally.
This is achieved by clustering the merchants to small subsets and the distance estimation and localization are
conducted within each cluster. All merchants are clustered based on the following intuitions.
• The urban and suburban areas should be separated.
• The inner and inter-cluster distances should be significantly different. Our empirical experiences show that the
typical inner-cluster distance is 2KM; whereas the typical inter-cluster distance is at least 5KM.
• The covered area of a cluster is limited by 2KM.
Given these intuitions, we cluster the merchants based on the hierarchical clustering algorithm BIRCH [9, 66], a
widely-adopted clustering algorithm. We start from single-node clusters, iteratively find the pair of clusters with
the least inter-cluster distance, and merge them if they are too close. When all iterations finish, we merge the
clusters of fewer than 4 merchants to nearby clusters because three points are needed to localize the fourth point.

5 EVALUATION

5.1 Methodology
5.1.1 Baselines. In addition to the five different ALWAES measurements, i.e., Reg+Man, Reg+Vir, Reg+Phy,
GPS+Phy and GPS+Man, we also implement ALWAES with three kinds of alternative technical components, i.e.,
clustering, distance estimation, and localization, summarized in Tab. 5. Note that for fairness, these baselines are
all implemented based on the same dataset as Reg+Phy.

Table 5. Algorithms in Comparisons

Components Clustering Distance Model Localization
Linear-based ✓ Linear-based ✓
Trajectory-based ✓ Trajectory-based ✓
MDS-based ✓ ✓ MDS-based
ALWAES w/o Cluster None ✓ ✓
ALWAES ✓ ✓ ✓

• Linear-based Algorithm calculates the travel distances by linear regression with the travel time [13].
• Trajectory-based Algorithm computes the travel distances based on the courier’s GPS data (under their
agreements) [69]. We track the couriers’ GPS every 20 seconds, which is for evaluation only because the
platform does not need their continuous GPS in operations.
• MDS-based Algorithm differs from ALWAES at the localization stage. MDS [17, 65] has been widely adopted
in localization. It requires the pairwise distances between every pair of merchants in computation. For those
without distance input, a multi-hop shortest path distance is used instead (We use the Floyd-Warshall algorithm).
• ALWAES w/o Cluster: To show the impact of clustering, we also implement ALWAES without the cluster
component so all merchants and data are mixed to train a single travel distance model, and then merchants are
localized.

5.1.2 Evaluation Metrics.
• Location FraudDetection: Because it is a binary classification problem, i.e., a merchant’s location is fraudulent
or not, we adopt the Area Under The Curve (AUC) and Recall.[25]. AUC is the probability that a classifier will
rank a randomly chosen positive instance higher than a negative one. AUC=0.5 is a lower bound, which can be
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obtained by a random guess. In our framework, we pay more attention to the missing detection (false negative)
than unnecessary checks (false positive). It is because the platform will double-check the fraud manually
according to the detection result of ALWAES to avoid mistaking merchants as frauds. As a result, we choose
the threshold to maximize Recall (instead of Precision) within the manual detection capability (detecting 25%
of merchants in this paper).
• Distance Estimator: We adopt MAE, Root Mean Squared Error (RMSE), and Median Absolute Error (MedAE)
to evaluate the performance of different algorithms.
• Merchant Localization: The localization error is measured by Euclidean distance between real location 𝑞

(i.e., ground truth) and computed location 𝑞.

5.2 Overall Results in Validation Phase
Fig. 16 shows the comparison of AUC and Recall between ALWAES and four baselines. Different versions of
ALWAES from three measurement infrastructures (i.e., Reg+Man, Reg+Vir, Reg+Phy) outperform the four baseline
algorithms. The four baseline algorithms use the same inputs of Reg+Phy. And Reg+Phy outperforms GPS+Man
but not GPS+Phy.

Fig. 16. AUC and Recall Comparison

5.2.1 Comparison with Baselines. We found that all the other four baselines (Linear-based, Trajectory-based,
MDS-based, and w/o C) have AUC around 0.5 to 0.6. For the MDS-based algorithm, its poor performance is
mainly due to the lacking of distance data on some pairs. In our work, each cluster has 54 merchants on average,
while 37% of merchants pairs have no travel data. For this, the MDS-based algorithm [65] has to fill the distance
matrix with estimated shortest paths, which brings great errors. By comparing these baselines, we found that the
distance model component has the biggest impact, followed by the localization and clustering component.

5.2.2 Comparison between Measurement Combination. We found only GPS+Phy is better than Reg+Phy, which is
expected given the advanced inputs of GPS+Phy from both beacon devices for timing and courier smartphone’s
GPS for locations. Reg+Man outperforming GPS+Man is because GPS+Man suffers from GPS errors in the urban
area. Localizing merchants based on instantaneous GPS are more affected by the uncertainty of couriers reporting
than getting travel time which may eliminate some uncertainties by timings subtraction (a certain courier may
have similar behavior, e.g. always reporting in advance). Reg+Vir outperforms Reg+Man because Reg+Man
suffers from unreliable manual timing inputs; Reg+Phy outperforms Reg+Vir because Reg+Vir suffers from the
low density of merchants with virtual beacon devices. Because only 87% of 3,200 merchants have virtual beacon
devices but all of them have physical beacon devices. The fundamental trade-offs between timing, locations,
hardware, and software are in the lessons learned of Sec. 6.
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5.2.3 Failure Scenarios. We found 25 merchants that are fraud locations but ALWAES fails to identify. We make
further investigations on these false-negative cases and there are two cases. (1) Collective Fraud. Some fraud
merchants may be close to each other, intentionally or coincidentally. Based on our results, we found that a set of
collective frauds closer to each other will make them hard to be detected and even mislead the model to believe
some correct merchants are erroneous if the density of fraud merchants is higher than the correct merchants.
There are 9 collective fraud merchants in our evaluation. But as indicated by our ground truth, there are only 2.9%
of fraud merchants, which makes our model performs well in practice. (2) Non-unique Localization. The topology
of nodes in a cluster is crucial for the localization. When the reference merchants are very close in distance and
have a symmetric topology, they are unable to localize merchants uniquely and large errors are introduced. But
this case is also rare in the urban areas because of the high merchant density. In order to enhance the merchants’
experience, our platform has a field study team to periodically visit some merchants with abnormal orders, and it
is also the remedial measurement against the failure scenarios. When a fraud merchant is found, our team will
visit his/her neighbors to avoid collective fraud. Meanwhile, the field study team will double-check the ALWAES
tagged fraud merchants to avoid incorrect tagging. The platform also has manual customer service as an appeal
channel for merchants to correct erroneous tag.
5.3 Results in Real-world Testing Phase
We deploy a well-trained version of ALWAES in the real-world platform operation in a one-week testing phase.
In this phase, we identified new erroneous merchants and misidentified some legitimate merchants. We also
report the impacts of ALWAES courier detour distance reduction.

5.3.1 New Fraud Detection. We identify eight additional fraud merchants that are not identified by the platform
initially but verified by our field study. We choose to manually verify these potential fraud merchants detected by
our model but not in the ground truth because these merchants have rich route records from reference merchants
that unrealistically seem far away according to the reported locations.

(839,	100%)

(134,	43%)

C
D
F	
(%
)

0
25
50
75
100

Deviation	distance(meter)
0 200 400 600 800

Fig. 17. Actual Deviation

25
14

47

32

Saved	detour	distance	(km)

Pe
rc
en
ta
ge
	(%
)

0

20

40

0.25 0.5 0.75 1 >1

Fig. 18. Saved Detour Dis.

Table 6. The Results of the Distance Estimator

Linear-based Trajectory-
based

ALWAES

MAE(m) 196.56 404.31 77.31
RMSE(m) 244.57 855.63 111.72
MedAE(m) 175.35 164.20 57.80

5.3.2 Courier Detour Distance Reduction. Fig. 17 shows the CDF of the actual deviation distance of detected
erroneous merchants from their real locations. Half of the merchants deviate more than 136 meters and the
maximum deviation distance is up to 839 meters. To show the effectiveness of ALWAES on saving the unnecessary
detours of couriers, Fig. 18 shows the distribution of the saved detour distances by ALWAES. We found that 20%
of the saved detours are more than 500 meters, and some even exceed 1 km. This is equivalent to 3,846 hours of
saved delivery time for couriers in total based on the average travel distance of couriers.
5.4 In-depth Results on Components
We evaluate the components of ALWAES based on Reg+Phy.
5.4.1 Distance Estimator Component. Tab. 6 compares the distance estimations of ALWAES and other two
distance estimator algorithms. It shows that ALWAES has only 77.31 meters MAE, while the MAE of Linear-based
and Trajectory-based is 196.56 meters and 404.31 meters, respectively. The MAE is significantly reduced by
60.66% and 80.87%. These good results are mainly due to the advantage of the 32 different features and the
machine learning algorithm we developed. It is interesting to observe that the Trajectory-based algorithm does
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not perform well either. This is mainly because in an urban area, the GPS signals drift largely and severely and
even the GPS-based trajectories cannot well measure the travel distances between merchants.

We use the “all but X” technique[26] to explain the feature importance for an ablation, removing one feature
then check the MAE against the original model. Fig. 19 shows the most important features and MAE without
them. Travel time is the key input. Without travel time, the MAE increases from 77 to 315 meters. The order
related features, e.g., the rate of merchant’s delayed products (i.e., an order was prepared late), also help our
distance estimation.
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The e-bike threshold𝑑bike is used for distinguishing the different travel modes based on different travel distances
(i.e. on foot or e-bike) (detailed in Sec. 4.2.2). Fig. 20 demonstrates how the MAE of Distance Estimator varies with
𝑑bike. We can see that it performs relatively stable and well when 𝑑bike is around 100 meter. The 𝑑bike equal to 0
meter means considering only one travel mode. It shows that considering two modes improve the performance
of Distance Estimator. It is because the couriers in China rarely deliver long-distance orders on foot considering
time limitations. As a result, it is necessary to generalize the finding to other cities in China that couriers have
different travel modes. And as they rarely drive a car to deliver orders, we did not consider the third model for
vehicles.

Impact of Data Length, Courier Count, Merchant Density. As shown in Fig. 21 (a) and (b), our model is insensitive
to data length and couriers scale, while Linear-based and Trajectory-based algorithms degrade dramatically when
the evaluation scale increases. This is because the simple linear regression model is inadequate for handling data
noise in a large dataset. Fig. 21 (c) reveals a significant improvement of our model when the merchant density
increases. This is because more reference merchants bring more training data, which makes our distance model
more accurate.
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5.4.2 Localization Component. We plot the CDF of localization errors in Fig. 22. It shows that 44.4% of the
ALWAES errors are lower than 100m, while that of the Trajectory-based algorithm is 14.2% and the Linear-based
is 4.6%.

Impact of Data Size, Courier Count, Merchant Density. The localization error for merchant density is in Fig. 23
(c). For ALWAES, the localization error continuously decreases with more nearby merchants. More nearby
merchants bring more reference nodes for localization, and hence the performance improves. When 10 merchants
per square kilometer are as reference merchants, the localization errors are dropped to 100 meters. For the
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Linear-based and Trajectory-based, the benefit of more reference nodes is weakened by the high noise of data
and degraded distance estimator, resulting in a worse performance with higher merchant densities. The impact of
the datasets size and the number of couriers on the Localization is shown in Fig. 23(a) and Fig. 23(b) with similar
observations.
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Fig. 24. Localization error in different districts

Generalization in Different Locations. The couriers’ and merchants’ behaviors may differ in different locations.
With the limited resources in practice (e.g., ground truth data collection), we are only able to evaluate our work
in only one platform at a city scale (6 million residents and 660 square kilometers of the urban area; 13 million
residents and 3768 square kilometers of the suburb area). In order to analyze the generalization in different
locations, we evaluate the ALWAES performance among different districts of Shanghai, which stand for various
behaviors to some degree such as downtown, suburb, industrial parks. The result is shown in Fig. 24. The three
districts with poor performance (Songjiang District, Minhang District, and Jinshan District) are all suburb districts
(1.6 million residents and 521 square kilometers of area per district on average) that have fewer couriers and
merchants than urban downtown districts. It indicates that ALWAES may work better in downtown regions
of cities with a similar merchants’ scale to Shanghai. But ALWAES can still provide better performance than
baselines in suburb areas.
The detection threshold is used for comparing the difference between the registered location (𝑞∗) and the

computed location (𝑞) to decide if a registered location is a potential fraud or not. To investigate its impact, we
explore recall over different thresholds in Fig 25. We set the threshold as 0.2 km based on the manual double-check
capability and the recall is 0.73.
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5.5 Robustness
We evaluate ALWAES’s robustness against the density of erroneous merchants (i.e. collective attack) and the
noisy timing data on the physical beacon devices’ input. The robustness of noisy timing data can also be treated
as the robustness against collusive couriers’ density (i.e. Collusive attack). Because ALWAES do not use the
couriers’ incentive reports of merchants’ location. The collusive couriers’ count (i.e. collusive attack) makes
no difference on ALWAES. However, if the fraud merchants know how our system works, they may ask the
collusive couriers to report order status manually in the fraud locations. In this case, collusive couriers bring
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noisy timing manually to our system. Because we implement ALWAES in a real-world platform with a fixed
portion (i.e., density) of erroneous merchants, we cannot directly evaluate the impact of different density of
erroneous merchants on ALWAES. Thus, we conduct a data-driven emulation to study this impact.
5.5.1 Impact of Erroneous Merchant Densities. We randomly select some merchants and manually drift their
locations from 100m to 300m. Fig. 26(a) shows the results of localization errors in different proportions of erroneous
merchants. These errors continuously increase as more merchants are erroneous. When 50% of merchants are
erroneous, the localization errors are up to 180m. This is already significant, as their location drift is 200m on
average. For others, their errors are more than 200m and can hardly be even worse. Thus, we find ALWAES can
be functional (error less than 100m) when no more than 20% of merchants are erroneous.

5.5.2 Impact of Physical Beacon Devices’ Timing Error. We assume the physical beacon devices’ timing inputs are
correct. To evaluate the performance with different timing errors, we randomly select data in different proportions
and manually add noise to the travel time feature from -3 mins to 3 mins. Fig.26(b) shows the results with different
proportions of the noisy travel timing data. We can see that ALWAES can tolerate 20% of input errors.

6 DISCUSSIONS

6.1 Lesson Learned
Lesson Learned 1: Fundamental Tradeoff between Timing, Locations, Hardware, and Software. By comparing the
tradeoff between different measurement infrastructures in Fig. 14 and their performance in Fig. 16, we found that:
•Without any physical or virtual beacon devices for explicit contextual timing, the implicit inaccurate timing
for order status update is helpful when using either GPS or reported merchant as locations, i.e., GPS+Man
outperforms first four baselines in Fig. 16 but not Reg+Man because GPS drifting makes GPS+Man inferior to
Reg+Man.
•With the help of physical beacon devices, Reg+Phy employs the explicit timing from physical beacon devices
only and outperforms all the other approaches except the cross infrastructure solution GPS+Phy that takes the
advantages of both GPS and beacon devices together.
• Considering the limitations of Reg+Phy which relies on the expensive deployment of physical devices, a virtual
beacon system (employs the smartphones of merchants) with a software-based solution Reg+Vir can achieve
similar performance by 87.2% of all merchants. Note that Reg+Vir does not require a merchant to install new
software but only adding a module to their existing app, which is practical in the real world but needs a high
penetration rate for a network effect.
Lesson Learned 2: System’s Robustness Against Attack. Because ALWAES do not use the couriers’ incentive

reports of merchants’ location. The count of collusive couriers who do not report merchants’ fraud (i.e. collusive
attack) has no influence on ALWAES. As for worse attacks that collusive couriers bring noisy timing or merchants
collective attack, we found that our system is robust to erroneous merchants densities (up to 20%) and Physical
beacon devices’ timing error (up to 20%) as in Fig. 26. So as long as no more than 20% of merchants providing
fraudulent locations, ALWAES is able to detect these fraudulent locations given a relatively correct beacon timing
(within 20% noise).

Lesson Learned 3: Component and Feature Performance for Mobility Uncertainty. Under the same data
collection infrastructure, our system has shown an advantage to two baselines as shown in Tab. 6 and Fig. 22. We
also provide deeper insights in terms of which components are more important (Fig. 16 shows the distance model
is the most important) and which features are more important (Fig. 19 shows travel time is the most important).

6.2 Why the Manual Crowdsourcing Approach does not Work
Our platform has asked the couriers to report wrong locations during the delivery, but this is not effective or
enforceable in practice. The reasons are as follows.
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• Average couriers lack incentives for reporting because their main job is delivering (e.g., 25 orders per day). The
feedback process and potential follow-up verification are time-consuming (including taking photos of shops,
uploading photos, GPS location and some text description). When couriers arrive at the merchant’s location
for the first time and make a detour, they may be not willing to report fraud under the risk of remaining orders
overdue. And experienced couriers may directly go to the real location when getting an order to pick up from
the fraud merchant without checking the authenticity of the merchant registered location.
• When a platform introduces incentives for fraud reporting (1 dollar reward for successful report in our platform),
the "eager beavers" phenomenon appears[7, 53]. Some couriers may get more and extra rewards bymanipulating
or even forging the information, which not only ruins the corrections but also costs more than needed. There
are more than 8 million registered couriers nationwide on the platform we are working with in China. Most
of them are part-time couriers with potentially untrustworthy given their employment types. It making the
design of the incentive mechanism a major challenge.
• Some malicious couriers could even collude with merchants[2, 15]. They can potentially work with merchants
by not reporting location fraud. Please see our attack models in Sec. 2.2

It is thus desired to perform fraud correction tasks in a non-incentive and automated manner.

6.3 Limitations
(i) We only consider the erroneous merchants outdoors. The impact of the indoor environment is only considered
as the dynamic factor of travel time variances, instead of indoor merchant errors. It is because the indoor errors,
e.g., wrong floors in the same building, might not be significant for delivery. Erroneous indoor locations may
concern other applications, e.g., indoor navigation, which is out of the scope of this paper. (ii) We envision there
is only a minority of erroneous merchants in our system. The results show that ALWAES will degrade obviously
when the percentage is higher than 20%. Because the location fraud is caused by human factors, our consideration
fits reality. (iii) Given the limited resources, we are only able to evaluate our work in only one platform at a city
scale. We envision it also works in other similar online delivery platforms in cities with a similar scale (e.g., New
York City and Beijing).

6.4 Generalization and Implication
We believe our methods can be generalized to a broadly of anomaly detection problems in other systems
involving spatiotemporal presences. Essentially, ALWAES introduces the idea of anomaly detection based on
spatiotemporal measurement. (i) In wireless sensing, ALWAES has the potential to detect the misplaced RFID
tags [50] (intentionally or unintentionally) and obtain relative positions[48] by comparing the expected and
measured distances between RFID tags. (ii) In location-based social networks (LBSN), ALWAES has the potential
to detect fake reviews[45] and malicious accounts[28] based on their spatiotemporal check-in data. (iii) In ride-
hailing services such as Uber, ALWAES has the potential to localize the drivers who are with low GPS accuracy in
the urban canyon[14] based on drivers pick-up customers update data. Further, our findings and ideas in ALWAES
can shed light on similar problems. A major implication lies in the tradeoff between different spatiotemporal
data sources because they feature different cost and performance [69]. Accounting data and GPS are widely used
given their low cost and great coverage. But due to mobility uncertainty and GPS spoofing, additional hardware
(e.g., physical beacon devices) or software (e.g., virtual beacon devices) are needed to guarantee accuracy and
coverage, which also introduces extra cost for hardware and user participation.

6.5 Ethics, Privacy and Security
The collection of the couriers’ data are under the couriers’ agreement as a part of the Privacy Policy and User
Agreement. In this agreement, the merchants and couriers are notified that the data are being collected and their
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data will be used to support and improve products and services (including using anonymous data for machine
learning or model training)[23, 24]. In the agreement, the merchants and couriers can explicitly opt out the data
collection when we ask for the consent. But most of them will not opt out because this data collection provides
the platform an opportunity to improve merchant profits and courier income. As discussed in Sec. 5.3 in the
paper, ALWAES can help the platform improve its services for saving delivery time to attract more customers to
place more orders, which will ultimately benefit both merchants (i.e., high profit from more customers’ orders)
and couriers (i.e., high income from more delivery tasks and less overdue penalty).
While the analysis of order update data has great potential for social benefits, we must take active actions to

protect couriers’ and merchants’ privacy: (i) Only a few data analysts have access to data and they have signed
the data privacy protocol, and there is no data access to the personnel not related to this project. (ii) We have
been working on aggregate and anonymous data, and we do not track individual trajectories of couriers in our
work. Under merchant owners’ agreements, beacon devices only broadcast Bluetooth signals and did not reveal
any personal information. The couriers and merchants’ IDs are anonymous keys to join different data sets, and
any other ID information cannot be tracked or identified in practice. There is no identifiable information (e.g.
names and phone numbers) in our dataset to re-identify a real person. (iii) All type of raw data (BLE, GPS trace,
etc.) are deleted from the server completely after a preset life-cycle (i.e., 3 months for the current policy), we
only keep the statistic information for analysis which are listed in Tab. 4. (iv) There is a strict internal regulatory
process to review the dataset before releasing it on the [anonymous] company’s official website.

6.6 Data Release
Our data release2 as introduced in the contribution list will be properly conducted by a strict internal regulatory
process to review the data and ensure privacy and security: (i) The identification field will be hashed so that
the “JOIN” operation can be used on the released dataset but original IDs cannot be recovered. (ii) We only
process the data fields that are useful in this project, and drop others for minimal exposure. (iii) The merchants’
stores locations are public information in platforms for customers reference and courier picking up orders. For
protecting the privacy of merchants fraud when releasing data, we will follow the state-of-the practice for the
data releasing in Alibaba [1], Amazon [5], and Baidu [6]. In particular, we split Shanghai into 350×400 grids, and
each grid is a 200 meter × 200 meter square. The merchants’ locations are only accurate to the grid. And we
remove the location data that is too unique. For example, only one merchant is in a grid. Even though it will
degrade the system performance, it is necessary to assure privacy at the expense of some performance when
releasing data. And we will try to ensure data validity under the premise of preserving personal privacy. Note
that we use accurate data in our real system.

The [anonymous] company has a tracking record to release various data used in research papers for resultant
research contests so the research community can build upon the published work. Similar dataset release can be
found for Alibaba [1], Amazon [5], and Baidu [6]. We will follow the data format of a previously released data set
from an instant delivery platform [19, 64] to protect privacy in the data release.
In our work, we assume all data collected from the virtual and physical beacon devices are correct and the

devices are secure. In practice, we designed and implemented an SM3-TOTP algorithm based on RFC 4226 to
avoid data spoofing and free-ride, while the designs on beacon devices are out of the scope of this work.

7 RELATED WORK

7.1 Location Correction
Data-driven approaches have been widely used to identify inaccurate locations. Google Maps, Baidu Map, and
DianPing provide the users with a feedback web page to report inaccurate locations [51]. Significant resources
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=107267
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have been invested to hire location correction employees, process the data, and make corrections[54]. Applications
are also developed to encourage people to upload photos and locations to earn bonuses. A typical app is GOLD
panning [3], which collected over 125 million pictures. These methods require either professional skills or
significant incentives. A few works are proposed for the location correction problem based on data already
collected. The most relevant work is TransLoc[64], which corrects the couriers’ location by modeling uncertainty
in indoor travel times in an online delivery platform. However, as it is based on the assumption that all merchants’
registered locations are correct, location fraud of merchants will introduce extra errors to the system, which is
the main focus of ALWAES. In addition, ALWAES was focused on outdoor merchants and explored the tradeoff of
three infrastructures (manual input, virtual and physical beacons); whereas TransLoc[64] was focused on indoor
couriers and explored only one kind of infrastructure data, i.e., manually inputted order data.

7.2 Crowdsourcing-based localization
There are many crowdsourcing-based works that require incentives to attract user’s participation, e.g., [7, 11, 22,
63]. All of them have to address the issues related to “Eager Beaver”, “Lazy Turkers”[22], and even malicious
workers[53, 62], which may not be practically in a large-scale real-world setting. Some other work explore location
updating approaches based on social media data, platform check-in data, and user feedback data [47, 52, 59, 71, 73].
However, their performances highly depend on the users’ education level and regional development, which
cannot be largely adopted [47, 61]. GPS and Wi-Fi information is also used to estimate merchants location
[34, 36, 40, 43, 49], which require a large scale of infrastructure, and these methods cannot address the intentional
location errors. The noisy data problem is also unavoidable because of low sampling and data quality changing
according to environmental conditions[12, 42, 46]. Crowdsourcing-based approaches are also proposed for indoor
localization, e.g., [33, 44, 55, 57, 65, 67, 70], which employ different types of sensors such as accelerometer,
magnetometer, gyroscope, or cameras. These works mainly focus on the localization system errors rather than
intentional errors[21, 41].

7.3 Instant Delivery
Many works focus on the study of online instant delivery problems recently, including merchants retrieval[18],
delivery time inference[58, 72], route prediction[68], etc. In these approaches, they generally assume the given
merchants’ locations are correct and ignore the system errors caused by location fraud, which is the main focus
of ALWAES.

8 CONCLUSION
We study the fraud location correction problem based on five measurement infrastructures in an online delivery
service. ALWAES is designed based on simple timings of courier’s arrival and departure at merchants, which can
be potentially generalized to various check-in activities. ALWAES partitions the merchants to small clusters, and
builds a travel distance model to estimate the travel distances between merchants, and lets the merchants cross
validate their locations. Experiment results show that ALWAES outperforms various baselines. We discuss the
strengths, limitations, and lessons learned of our system and will release a one-month sample of our dataset to
inspire future research on this direction.
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